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Introduction
It is important to consider the distributions and classes of different assets in investor 
portfolios in maximizing the asset returns for a given level of volatility (Konno and 
Yamazaki 1991). Based on the belief that distinctive factors influence the price and risk 
movements of different assets and that correlation among global financial products is 
relatively low, investors construct their portfolios by diversifying investment in various 
assets. Traditionally, investors have mainly focused on stocks. In the past few decades, 
broad commodity assets have become an increasingly popular investment option, in line 
with the diversification premium for global commodities (Perold 1984; Bessler and Wolff 
2015). Global commodities, such as crude oil, precious metals, and agriculture prod-
ucts, share common drivers for price and volatility movements compared to other assets 
such as stocks. As a result, broad commodity investment is usually regarded as a natural 
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hedging and diversification strategy, which benefits from different seasonal cycles and 
supply and demand factors (Geman and Ohana 2008).

Most investments in broad commodity assets typically focus on traditional products, 
such as crude oil, agricultural products, and precious metals. However, recent years have 
seen the emergence of a new type of commodity asset—cryptocurrency—which has 
gained the attention of investors. Bitcoin, the most popular cryptocurrency, has seen a 
sharp rise in its price from almost zero in 2009 to approximately $60,000 in 2021. Due to 
its extreme price disturbances observed during the latter half of 2019, Bitcoin has been 
considered a threat to the stability of the world financial system; however, its unique 
economic properties have made it an attractive and potentially high-return investment 
option (das Neves 2020; Jiang et al. 2021). As there is a finite number of Bitcoins in cir-
culation, the ever-decreasing supply of the asset available for buying and selling has 
driven a growing number of institutional investors to embrace this cryptocurrency as an 
investment option. For example, Bitcoin’s price resurgence in 2021 was partly fueled by 
the Wall Street billionaires who publicly supported and invested in the asset.1 However, 
due to its high volatility, most investors are hesitant to solely invest in this asset. Instead, 
many trading firms seek to incorporate it into their portfolio along with other traditional 
commodities to hedge against its potential volatility risks (Liu and Tsyvinski 2018).

Bitcoin’s commodity properties have been investigated by some studies. For example, 
using a conditional correlation model, Bouri et al. (2017) suggest that Bitcoin can serve 
as a safe haven for other major commodities in the global commodity market system. 
Selmi et al. (2018) use the quantile regression to investigate the economic characteristics 
of Bitcoin, indicating that it is both a hedge and safe haven for oil price movements. As a 
result, Bitcoin is considered the “new gold” for its safe haven properties, which are simi-
lar to that of gold and serve as a potential hedge or safe haven asset for finical portfolio 
optimization (Selmi et  al. 2018; Symitsi and Chalvatzis 2019). However, limited stud-
ies investigate the effects and usefulness of a cryptocurrency in portfolio investments. 
Therefore, this study attempts to close this gap by considering Bitcoin and its diversifica-
tion properties in the development of a broad commodity portfolio optimization system 
based on deep learning and reinforcement learning.

The literature has sought to improve portfolio performance using various optimization 
methods and models. Conventional portfolio optimization models, such as the mean–
variance, risk parity, and Black-Litterman models, utilize the historical returns and vari-
ances of financial assets to derive the maximized Sharpe ratio or efficient frontier of the 
portfolio (Kou et al. 2021). However, a potential problem with such approaches lies in the 
discrepancy between historical and future prices, which may lead to estimation errors, 
eventually generating non-optimal proportions of the target portfolio (Guastaroba et al. 
2009; Tola et al. 2008). To address this issue, algorithmic optimization approaches based 
on data-driven techniques have been introduced for financial time series data predic-
tion and portfolio decision-making in recent studies (Branke et  al. 2009; Lwin et  al. 
2014). Although improvements have been made, the current algorithmic methods for 
portfolio optimization face two primary challenges: improving the directional accuracy 

1  See https://​www.​cnbc.​com/​2021/​01/​04/​bitco​in-​btc-​rally-​partly-​driven-​by-​more-​insti​tutio​nal-​inves​tors-​pwc-​says.​html.

https://www.cnbc.com/2021/01/04/bitcoin-btc-rally-partly-driven-by-more-institutional-investors-pwc-says.html
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(DA) of multi-asset return predictions and implementing multi-objective portfolio 
optimizations.

With the development of computer technologies, deep learning prediction models 
have been introduced to improve the financial time series data forecasting accuracy. 
Compared to traditional techniques based on econometrics and machine learning tech-
niques that are unable to perform well on forecasting multivariate time series data due 
to noise disturbances (Altan et al. 2019; Galankashi et al. 2020; Jalali and Heidari 2020), 
deep learning techniques are observed to be more effective. For example, Atsalakis et al. 
(2019) introduce a novel Neuro-fuzzy technique with artificial neural networks (ANN) 
to forecast the market trends in cryptocurrency prices, which show an improvement 
in prediction accuracy compared to traditional prediction methods. Dutta et al. (2020) 
employ a gated recurring unit model to predict the price movements of Bitcoins and 
achieve a better forecasting performance. Long et al. (2019) propose a multi-filter neu-
ral network for stock price prediction. Further, Li et al. (2019) develop a crude oil price 
prediction system based on the convolutional neural networks. Among all the deep 
learning techniques, the recurrent neural network (RNN) models have displayed a supe-
rior performance over others in terms of time series prediction accuracy (Duan et  al. 
2016). Such a superior performance may be attributed to the recurrent feedback layer of 
RNN models, which allows them to effectively use internal memories to process input 
data sequentially and produce more precise forecasts (Cao et al. 2012; Anbazhagan and 
Kumarappan 2012).

However, as most commodity market prices are volatile and non-stationary, the fore-
casting performances may be negatively affected because of high volatilities. In recent 
years, a hybrid forecasting approach known as “decomposition and ensemble” has been 
proposed to improve the prediction accuracy of non-stationary time series with high 
complexity and irregularity. The decomposition and ensemble approach is based on 
the principle of “divide and conquer,” which integrates signal decomposition technol-
ogy, such as empirical mode decomposition, ensemble empirical mode decomposition, 
or variational mode decomposition (VMD), with machine learning and deep learning 
models (Yang et al. 2019; Wang et al. 2018). In this approach, the original prediction task 
is divided into subtasks to simplify the modeling difficulty (Li et al. 2021). Compared to 
other models, this approach is not bound by strict assumptions such as that of linearity 
and stationarity, which are imposed on econometric models.

Numerous studies have employed this hybrid forecasting approach and demon-
strated its effectiveness in improving the time series forecasting performance (Yu et al. 
2015; Wen et al. 2017). Despite the improved prediction performance, there might be 
a potential problem with the decomposition and ensemble approach. Estimation errors 
generated while forecasting the individual sub-modes tend to accumulate during the 
aggregation process. This accumulation may cause significant discrepancies between the 
actual and predicted values, which could negatively affect the prediction performance 
(Zhu et al. 2019). Therefore, we propose a new hybrid deep learning-based forecasting 
approach in our portfolio optimization framework to mitigate this problem. Unlike pre-
vious studies, our forecasting approach eliminates the aggregation step by directly gen-
erating the final prediction results using all the intrinsic modes as inputs simultaneously, 
which can potentially reduce the aggregation errors.
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The literature has adopted many portfolio models, such as the cardinality constrained 
model (Zha et al. 2020), fuzzy selection model (Yue 2019), and Powell approaches (Pow-
ell 1964), to address the second challenge of implementing multi-objective portfolio 
optimizations. Among all the portfolio optimization models, reinforcement learning 
models are considered to be the most appropriate for financial portfolio optimization. 
For example, Jangmin et  al. (2006) introduce a reinforcement learning framework for 
asset allocation optimization by using meta policy as a reinforcement learning strategy 
to optimize stock portfolios, which is designed to incorporate the information obtained 
from the ratio of the stock fund and stock recommendations. Jeong and Kim (2019) use 
a Deep Q Network-based reinforcement learning model to improve the prediction and 
trading performance of stock markets. Q-values are utilized to analyze which portfolio 
action strategies are beneficial for improving profits in a confused market. Eilers et al. 
(2014) develop a novel integrated robust artificial neural network reinforcement learning 
(ANN-RL) model to filter the seasonality of financial assets, where the Sharpe ratio is 
introduced to act as network rewards in the reinforcement learning process.

However, despite contributing toward improving the market returns and their asso-
ciated risks, previous reinforcement learning-based portfolio optimization frameworks 
have two limitations. First, previous models typically consider a discrete action space, 
implying that there are only a fixed number of portfolio weight allocations from which 
the model can choose. However, the portfolio weight allocation is a continuous action 
space in reality, as each asset can be potentially given any weight between 0 and 100%. 
Therefore, although the portfolio performances have improved, the previously imple-
mented model may have ignored the possibility of other allocations that do not exist 
in the pre-determined action space. To address this limitation and improve the model’s 
consistency, we develop a portfolio optimization framework based on a deep determin-
istic policy gradient model (Lillicrap et al. 2015) that can effectively consider the con-
tinuous characteristics of the weight allocation action space. In addition, the previously 
employed portfolio optimization models typically allocate asset weights to optimize the 
portfolio performance directly based on the forecasted trends of the assets without con-
sidering the potential prediction errors. Hence, these models assume that the forecasted 
value is entirely accurate, which is unrealistic in practice. Therefore, our portfolio opti-
mization framework attempts to address this issue by considering the prediction errors 
that may arise in the forecasting process, which can potentially allocate weights more 
effectively to improve the portfolio performance.

Based on previous studies, we propose a novel ensemble portfolio optimization 
(NEPO) framework utilized for broad commodity assets. First, a non-recursive decom-
position approach through VMD is utilized to decompose the daily closing price data 
of the selected commodity assets into distinctive intrinsic modes in order to extract the 
additional hidden information and patterns in time series data. Second, the decomposed 
intrinsic modes of each asset are inserted into a bidirectional long short-term memory 
(BiLSTM) deep learning model to forecast the daily closing price and return of the asset. 
Compared with the typical unidirectional deep learning model, the proposed prediction 
model can extract a two-way sequential relationship in time series data, making it more 
consistent with reality (Ullah et al. 2017). Additionally, unlike other decomposition and 
ensemble forecasting approaches, our proposed price prediction model eliminates the 
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aggregation step by generating the forecasting results directly through the simultane-
ous input of all the extracted intrinsic modes into the deep learning model. Third, the 
predicted returns of the asset as well as the estimation errors are included in a reinforce-
ment learning-based optimizer to allocate optimal weights for the commodity assets 
in the portfolio. Several prediction models, such as machine learning and deep learn-
ing models, are introduced as benchmarks to assess the forecasting performance of our 
decomposition-based bidirectional deep learning model. The empirical results suggest 
that the proposed VMD-BiLSTM model can effectively improve the prediction accuracy 
and trend prediction ability across various commodity assets.

We compare the performance of our portfolio optimizer to that of other commod-
ity funds, indices, and asset allocation strategies in terms of an annualized return and 
Sharpe ratio. The empirical results indicate that our ensemble portfolio optimization 
framework can generate higher returns and a better Sharpe ratio than the others. The 
results also indicate that by including Bitcoins in the commodity portfolio, asset manag-
ers can achieve higher returns without being exposed to significant financial risks. We 
find that it is possible to take advantage of the returns generated from Bitcoins while 
reducing the investment risks caused by its extreme volatilities. Overall, employing the 
proposed ensemble portfolio optimization framework and considering Bitcoin a tradi-
tional commodity portfolio can generate better fund performances for asset manage-
ment and portfolio profits for commodity investors.

Our study’s primary contributions are as follows. First, we extend the broad com-
modity asset pool for potential diversification premiums by utilizing the economic and 
investment properties of Bitcoin by incorporating it into the investment portfolio. To the 
best of our knowledge, Bitcoin has not been considered a portfolio component in portfo-
lio optimization problems; we aim to fill this literature gap through this analysis. Second, 
the proposed ensemble portfolio optimization framework allows the asset weights to be 
allocated in a continuous action space while considering the prediction errors generated 
in the optimization process. Compared to the portfolio optimization models in previous 
studies, our proposed model is more practical and consistent with reality.

Methodological framework
Our NEPO framework comprises three main components: an effective decomposition 
technique, VMD, is used to decompose the original time series of all the commodities 
and extract the inner patterns of the data; the extracted inner factors of the different 
commodities are then incorporated into the BiLSTM neural networks to predict their 
five-day returns; finally, reinforcement learning is applied to optimize and re-balance the 
portfolio weights based on the predicted returns and forecasting evaluation metrics. The 
detailed framework is shown in Fig. 1.

VMD

VMD decomposes the original complex and non-stationary time series data into nor-
mally distributed stationary volatility data, thereby generating economic implications. 
This non-recursive signal decomposition technique was proposed by Dragomiret-
skiy and Zosso (2014). It decomposes the original input signal f (t) into a series of 
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quasi-orthogonal band-limited discrete sub-signals uk through Wiener filtering and 
Hilbert transform (Wang and Markert 2015). The decomposed sub-signals uk are 
mostly centered tightly around their respective center frequency ωk (Liu et al. 2016). 
The optimization procedure is as follows (Zhang et al. 2017):

Fig. 1  Portfolio optimization and NEPO framework
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Step 1: Calculate the Hilbert transform of each mode uk and transform it into its 
respective uni-sided frequency spectrum.
Step 2: The frequency spectrum of each mode uk is altered into a narrow fre-
quency baseband by multiplying an exponential function tuned to the correspond-
ing estimated center frequency.
Step 3: Obtain the bandwidth of each mode uk by conducting the H1 Gaussian 
smoothness on the demodulated signal.

The iterative minimization process seeks to minimize the total bandwidth of each 
mode, which can be expressed in the following form:

where K  denotes the number of decomposed modes, {uk} and {ωk} are the decomposed 
modes and their respective center frequencies, δ(t) denotes the Dirac delta function, ⊗ 
represents the convolution operator, and f (t) denotes the original input signal.

For finite convergence and constraint enforcement, a quadratic penalty function α 
and Lagrangian multiplier � are introduced to obtain the optimal solution of the con-
strained optimization problem provided in Eq. (2). The augmented Lagrangian multi-
plier function L can be obtained as follows:

The optimal solution is obtained using the alternative direction method of multipli-
ers (Hestenes 1969), while the original input signal f (t) is decomposed into K  sub-
signal modes.

BiLSTM neural networks

The bidirectional RNN was proposed by Schuster and Paliwal (1997). It utilizes both 
forward and backward information in the data. As illustrated in Fig.  2, the bidirec-
tional RNN structure contains two unidirectional hidden layers, where one layer 
processes information from the forward direction and the other from the backward 
direction. The forward and backward unidirectional layers are concatenated to one 
output layer, such that the neural networks can extract bidirectional sequential rela-
tionships in the time series data. Compared to traditional unidirectional neural net-
works, it can preserve information from both the past and future.

In our prediction model, we replace the traditional RNN cells with LSTM cells, con-
sidering their ability to learn long-term dependencies (Zhang et  al. 2018). At each 
time step t , an LSTM cell consists of an input gate it , a forget gate ft , an output gate 
ot , and a memory cell block Ct . ft and it are defined as follows:
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A tanh layer is utilized to generate a new memory cell block C̃t  . The existing memory 
cell block Ct is then updated, while the output gate ot and hidden state ht are generated:

where xt denotes the input at time t , σ represents the sigmoid function, and ∗ is the ele-
ment-wise multiplication. W  and b are the respective weight matrices and bias vectors.

Reinforcement learning

This study uses the predicted returns generated from the BiLSTM neural networks and 
integrates them into a reinforcement learning model to optimize and re-balance the 
weights of the portfolio. The set of agent states S represents the previous weight alloca-
tion, and the set of agent actions At denotes the possible set of portfolio allocations. The 
probability of the reinforcement learning model selecting an action (a portfolio weight 
allocation) a in state s can be expressed as follows:

The state spaces contain all the possible allocation of portfolio weights, while the 
actions are the set of possible allocations from state spaces. At each time step t , the state 
st and action at can be expressed as follows:

(3)ft = σ
(
Wf · [ht−1, xt ]+ bf

)

(4)it = σ(Wi · [ht−1, xt ]+ bi)

(5)it = tanh (WC · [ht−1, xt ]+ bC)

(6)Ct = ft ∗ Ct−1 + it ∗ C̃t

(7)ot = σ(Wo · [ht−1, xt ]+ bo)

(8)ht = ot ∗ tanh (Ct),

(9)π : S × A → [0, 1]

(10)π(a|s) = Pr(at = a|st = s).

Fig. 2  LSTM cell structure



Page 9 of 26Li et al. Financ Innov            (2021) 7:63 	

where wi,t(i = 1, . . . n; t = 1, . . .T ) denotes the allocated portfolio weight for commod-
ity i at time t.

We further define the reward function at time t , which is denoted as rt , as the dif-
ference between the reward for the newly allocated portfolio weights and the previous 
portfolio weights:

Although a set of portfolio management targets and indicators, such as the Omega 
and Sortino ratios, are available for portfolio optimization, the Sharpe ratio is the most 
widely utilized indicator and serves as the baseline of portfolio ratio improvements in 
academia and industry (Farinelli et al. 2008; Kapsos et al. 2014). Qt and Q̃t in Eq.  (12) 
denote the weighted Sharpe ratio (Sharpe 1994) of the newly allocated portfolio weights 
and the portfolio weights observed in previous studies, respectively. R̃MSEt and RMSEt 
represent the weighted root mean squared error (RMSE) of the prediction models for 
the new portfolio weights and the weights computed in previous studies, respectively. 
The reinforcement learning model is trained to find a set of portfolio weight allocations 
that will maximize the expected return:

After every period (five days), new commodity prices are included in the prediction 
model to generate the predicted returns for the next period. Based on the new prediction 
values, portfolio performance, and weights from the previous period, the reinforcement 
learning model can optimize and re-adjust the portfolio weights for the next period. This 
model is designed to self-adjust and find optimized portfolio allocations with the least 
human participation. In particular, this self-learning procedure can effectively find a bal-
ance between maximizing the portfolio returns and minimizing the risks of the portfolio 
generated from the errors in the forecasting model.

Empirical study
Our analysis consists of two parts. First, the VMD-BiLSTM models first predict the five-
day prices and returns for the chosen commodities based on their respective historical 
time series data. Second, the reinforcement learning model considers the prediction 
results and allocates the optimal portfolio weights for each predicted period accordingly.

Description of the dataset

We select five major commodity markets to construct our commodity portfolio, 
which consists of stocks, agriculture, energy, precious metal, and the newly emerged 

(11)at = wt =
(
w1,t , . . . ,wn,t

)

(12)
st = wt−1,

(13)rt =
Q̃t

R̃MSEt
−

Qt

RMSEt
.

(14)V s
π = E

[
∞∑

t=0

rt |s0 = s

]
.
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cryptocurrency commodities. In the portfolio, each market is represented by its leading 
commodity, which includes the S&P 500 stock index, wheat, WTI crude oil, gold index, 
and Bitcoin.

The data are obtained from Yahoo Finance, from which we download the daily closing 
price of the S&P 500 index, wheat, WTI crude oil, gold, and Bitcoin from January 2, 2013 
to February 21, 2020, obtaining 1797 observations. As Bitcoin is traded continuously 
throughout the day, its opening price generally refers to the price at 12:01 AM UTC and 
the closing price to that at 11:59 PM UTC on any given day. A graphical representation 
of the data for each commodity is provided in Fig. 3.

The common descriptive statistics for the commodity time series data are presented 
in Table 1. The daily closing prices of all the commodities are non-normal and positively 
skewed (right skewed). In addition, the augmented Dickey-Fuller test indicates that the 
time series data for the stock (SPY), crude oil (WTI), gold, and Bitcoin are all non-sta-
tionary and have a unit root. The null hypothesis of the augmented Dickey-Fuller test 
for wheat is not rejected at the 10% level of statistical significance, which means that the 
series is stationary.

Moreover, this study conducts a correlation analysis among the commodities. The 
Pearson correlation coefficients are shown in Fig. 4. The results suggest that there exist 
moderately weak non-linear relationships among the commodities. In particular, Bitcoin 
is negatively correlated with all the other commodities. In addition, there exists a strong 
positive correlation between the stock commodity (SPY) and the energy commodity 
(WTI).

We divide the data into two sets: a training set and a testing set with a split ratio of 8:2, 
which means that the preceding 80% of the data are used to train the prediction model, 
while the remainder are used to evaluate the model. We use a sliding input of 14 days in 
the prediction process, which means that the model considers the historical data from 
t − 13 to t to forecast the five-day-ahead closing price at t + 5 . Therefore, our training 
set consists of 1421 observations from January 30, 2013 to September 19, 2018, while the 
testing set consists of 356 observations from September 20, 2018 to February 21, 2020.

To eliminate the differences in the variable dimension and increase model forecasting 
reliability, we normalize the data in the range of [0,1] as shown below:

where xt denotes the true value of the time series at time t , while max xt and minxt are 
the maximum and the minimum true values of the time series, respectively.

After the normalized closing prices are predicted, they are converted to predicted 
returns as follows:

where r̂t+5 and p̂t+5 denote the predicted returns and predicted closing price at time 
t + 5 , respectively. Here, pt represents the actual closing price at time t.

The constructed prediction model used in this study consists of five layers: an input 
layer, two hidden layers in the forward and backward direction, an output layer, and a fully 

(15)x̂t =
xt −min xt

max xt −min xt
,

(16)r̂t+5 =
p̂t+5 − pt

pt
,
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connected layer. The dimensions of the input layer, hidden layers, and output layer are same 
as that of the input data. The dimension of the fully connected layer is set to one to repre-
sent the single final predicted output. We use the Adam optimizer with the learning rate 
(LR) set to 0.01 with tanh as the activation function. We adopt a rolling forecast process 
where the rolling window is set to 90-days. The rolling process is illustrated in Fig. 5.

Evaluation measures

To assess the accuracy of our forecasting models, we adopt the mean square error (MSE) as 
the loss function. It is calculated as follows:

(17)MSE =
1

N

N∑

t=1

(
xt − x̃t

)2
.

Table 1  Descriptive statistics

*Statistical significance at the 10% level

Commodities Count Mean SD Skewness Kurtosis ADF test

Stock 1797 228.17 45.32 0.32 2.12  − 0.272

Wheat 1797 523.26 89.63 0.92 3.04  − 2.853*

Crude oil 1797 64.95 21.34 0.69 2.14  − 1.476

Gold 1797 1351.13 113.52 0.43 3.18  − 2.566

Bitcoin 1797 3037.68 3771.70 1.24 3.66  − 1.127

Fig. 4  Correlation among the commodities
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The RMSE and mean absolute error (MAE) are selected as the evaluation measures. 
They are calculated as follows:

where x̃t and xt (t = 1, 2, . . . ,N ) are the predicted and actual true values at time t , while 
N  represents the total number of data points in the testing set.

In addition, we introduce DA as the metric to assess the market trend predictive 
ability of the model:

where

For the forecasting model, lower MSE, RMSE, and MAE values and larger DA val-
ues indicate that the model has higher predictive accuracy and a stronger ability to 
predict the market trend. For benchmarking purposes, we compare the performance 
of our decomposition-based VMD-BiLSTM model against four other benchmark 
models, including the BiLSTM, unidirectional LSTM, support vector regression, and 
linear regression models.

To assess the performance of the portfolio constructed by our reinforcement learn-
ing model, we compare the average five-day returns of our portfolio and the overall 

(18)RMSE =

√√√√ 1

N

N∑

t=1

(
xt − x̃t

)2

(19)MAE =
1

N

N∑

t=1

∣∣xt − x̃t
∣∣,

(20)DA =
1

N

N∑

t=1

at ,

(21)at =

{
1, (xt − xt−1)

(
x̂t − xt−1

)
≥ 0

0, (xt − xt−1)
(
x̂t − xt−1

)
< 0

.

Fig. 5  Rolling forecast process
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Sharpe ratio against that of other portfolios and the reported financial performance 
from similar commodity indices and funds. The Sharpe ratio is defined as follows:

where rp denotes the annualized return of the portfolio, σp is the annualized volatility of 
the portfolio, and rf  represents the nominal risk-free rate. As suggested in previous stud-
ies (Fabozzi et al. 2007; Ackerman et al. 2013), we set the nominal risk-free rate rf = 2%.

We consider several other portfolios, including the equal-weighted portfolio (the five 
chosen commodities are allocated equal weights throughout the trading period) and 
non-Bitcoin portfolio (only SPY, wheat, WTI, and gold are considered), for compar-
ing performance. We also obtain the financial performance data from similar exchange 
traded funds (ETF) for comparison, which includes the broad commodity ETF and Bit-
coin ETF. The financial data for these ETFs for the trading period ranging from Septem-
ber 14, 2018 to February 21, 2020 are all downloaded from Yahoo Finance.

Return prediction results

First, we decompose the original historical price time series for all the commodities in 
our portfolio via VMD. According to the literature, VMD can effectively help neural 
networks to capture the tendency and cyclicity of time series data. For our analysis, the 
historical data for each selected commodity are decomposed into their respective sub-
series modes as shown in Fig. 6.

As we can see from Fig.  6, the historical daily closing price data for each commod-
ity are decomposed into 11 sub-series modes labeled from M1 to M11, respectively. For 
each commodity, their decomposed modes display different cyclicity and fluctuation 
patterns. The sub-series modes range from low frequency to high frequency. Specifically, 
the M1 modes have the lowest frequency, reflecting the long-term trends for the time 
series. However, M2 to M5 represent the medium frequency modes, which show the 
periodicity of the price fluctuation. Lastly, M6 to M11 are the high-frequency modes, 
which represent the short-term fluctuations in the data.

By decomposing the historical price time series, we can extract the inner factors and 
patterns in each commodity. In general, these inner factors may contain hidden informa-
tion that can influence the price fluctuation of the commodity (Wang et al. 2014), which 
cannot be captured with the original data. Consequently, this ability to extract hidden 
fluctuations and patterns can improve the forecasting ability of the prediction models.

In the prediction step, the historical daily closing prices of each commodity and the 
decomposed sub-series modes are included in the prediction model to generate its five-
day ahead predicted closing price that is further converted into its predicted return. This 
procedure is repeated for all the five commodities in our portfolio, while considering the 
same model settings to ensure consistency.

Observing the prediction performances of all the commodities displayed in Table 2, 
we can conclude that our VMD-BiLSTM model is the most suitable for generating the 
most reliable forecasting results as compared to other benchmark models.

After analyzing each commodity, we find that the VMD-BiLSTM model displays 
the most drastic improvements in RMSE and MAE performances in the case of the 

(22)SR =
rp − rf

σp
,
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benchmark models. The VMD-BiLSTM model obtains the highest DA out of all the 
models. This superior performance indicates that our prediction model can effec-
tively capture and forecast the movement trend for all the selected commodity 
markets. Moreover, the high prediction accuracies achieved by our VMD-BiLSTM 
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Fig. 6  Data decomposition results
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model across all the commodities indicate that it is not overfitted to a particular 
dataset. Thus, it could be generalized for all commodity markets.

Although our VMD-BiLSTM model can significantly improve the forecasting per-
formance, its predictive accuracy differs for each commodity. Specifically, the model 
displays the highest prediction accuracy in the gold commodity market by achieving 
the lowest RMSE and MAE and a relatively high DA of 93%. In contrast, it obtains 
the highest RMSE and MAE and the lowest DA of 85.4% in the Bitcoin commodity 
market. This difference in prediction accuracies could be attributed to the fact that 
the selected commodities have varied volatilities. For example, gold is regarded as 
an investment safe haven due to its relatively low volatilities (Baur and McDermott 
2010); in contrast, Bitcoin is known to be a volatile asset as its prices can fluctu-
ate significantly. As discrepancies in prediction accuracy exist among different com-
modities, we must consider them when building portfolio allocation strategies based 
on the predicted values.

Table 2  Comparison of prediction performances for the proposed model and benchmarks

Models RMSE MAE DA

Stock market

VMD-BiLSTM 0.00683 0.00512 0.85955

BiLSTM 0.02349 0.01714 0.42415

LSTM 0.02366 0.01753 0.43820

SVR 0.02329 0.01686 0.37640

LR 0.02817 0.02030 0.51966

Wheat market

VMD-BiLSTM 0.00851 0.00657 0.94101

BiLSTM 0.04138 0.03321 0.51404

LSTM 0.04164 0.03332 0.49719

SVR 0.03550 0.02867 0.55618

LR 0.04251 0.03399 0.53652

Crude oil market

VMD-BiLSTM 0.01543 0.01144 0.94662

BiLSTM 0.05927 0.04656 0.51966

LSTM 0.05957 0.04681 0.49157

SVR 0.05253 0.04134 0.40449

LR 0.06119 0.04823 0.54775

Gold market

VMD-BiLSTM 0.00452 0.00362 0.92977

BiLSTM 0.02173 0.01740 0.49157

LSTM 0.02195 0.01755 0.50842

SVR 0.01898 0.01514 0.48034

LR 0.02209 0.01772 0.45225

Bitcoin market

VMD-BiLSTM 0.03464 0.02608 0.85393

BiLSTM 0.14665 0.10608 0.53932

LSTM 0.15859 0.11898 0.55337

SVR 0.11544 0.08592 0.55618

LR 0.16189 0.12486 0.46910
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Robustness tests

To further verify the robustness of our prediction, we test the prediction model using 
different combinations of neural network hyperparameters. The hyperparameter sets 
contain two components: the dimension of the hidden layers [11, 22, 33] and LR [0.001, 
0.01, 0.1]. The results for all the datasets and commodities are presented in Table 3.

The results in Table  3 indicate that the different hyperparameter combinations can 
yield varied model prediction accuracies, where the bold fonts present the prediction 
results of 11 dimension hidden layers and 0.01 LR settings for each market. It is clear 
that when the dimension of the hidden layers is set to 11 and LR is set to 0.01, our pre-
diction model obtains the best prediction results. Further, the consistently superior 
results across all the commodities indicate that our model is not overfitted to a particu-
lar dataset.

To further verify the robustness of our prediction model, we use the same prediction 
model with the best hyperparameter settings on four different datasets that include the 
first 95%, 90%, 85%, and 80% of the original time series, which are denoted as “Set 95,” 
“Set 90,” “Set 85,” and “Set 80,” respectively. For each dataset, the split ratio is set to 8:2. 
The test results for all the datasets and commodities are presented in Table 4.

The results in Table  4 indicate that our VMD-BiLSTM prediction model displays 
a consistent and good performance across all the commodities in different datasets in 
terms of RMSE, MAE, and DA. This indicates that our prediction model can consist-
ently predict the future prices of different commodities across various market condi-
tions, implying that our prediction model is robust and generalizable across different 
commodity markets.

Portfolio optimization results

After obtaining the prediction results from the VMD-BiLSTM model, we use them 
as the input to construct our commodity portfolios. In this analysis, we apply a deep 
deterministic gradient policy reinforcement learning model to optimize asset allocation 
automatically every five days. After obtaining the allocation weights in each portfolio, 
we calculate the actual annualized returns, volatility, and Sharpe ratio of the portfolios 
using real-time commodity prices. To further verify the practicality of our strategy in 
the real world, we consider the transaction fees of each commodity, which are collected 
from Yahoo Finance. To evaluate the performance of each selected portfolio, we divide 
the entire trading interval into quarters (four months). In our trading policy and simula-
tion, we ensure that our assets are sufficiently large to cover the trading volumes for all 
commodities. As a result, the initial investment capital for each trading strategy is set 
at $10,000. The investment asset and indicator comparisons are separately illustrated in 
Fig. 7 and Table 5.

As Bitcoin is a relatively new commodity asset, it has not been considered a portfo-
lio component in portfolio optimization problems by previous studies. To investigate its 
diversification properties and effects in a portfolio, we construct two portfolios using 
our NEPO framework: the extended broad commodity asset (EBCA) portfolio and the 
traditional broad commodity asset (TBCA) portfolio. The EBCA portfolio contains all 
the selected commodity assets (SPY, wheat, WTI, gold, and Bitcoin). In contrast, the 
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Table 3  Robustness test with different hyperparameters

Dimension LR RMSE MAE DA

Stock market

11 0.1 0.00746 0.00617 0.76316

11 0.01 0.00683 0.00512 0.85955

11 0.001 0.00734 0.00545 0.76003

22 0.1 0.00711 0.00587 0.80214

22 0.01 0.00718 0.00553 0.84403

22 0.001 0.00713 0.00565 0.79469

33 0.1 0.00723 0.00573 0.83708

33 0.01 0.00699 0.00542 0.85697

33 0.001 0.00703 0.00556 0.82905

Wheat market

11 0.1 0.00911 0.00697 0.87057

11 0.01 0.00851 0.00657 0.94101

11 0.001 0.00869 0.00780 0.92607

22 0.1 0.00887 0.00757 0.88559

22 0.01 0.00878 0.00770 0.91746

22 0.001 0.00897 0.00765 0.85845

33 0.1 0.00971 0.00689 0.90955

33 0.01 0.00954 0.00678 0.91205

33 0.001 0.00884 0.00701 0.83208

Crude oil market

11 0.1 0.02272 0.01368 0.90702

11 0.01 0.01543 0.01144 0.94662

11 0.001 0.01783 0.01555 0.90035

22 0.1 0.02749 0.01491 0.91657

22 0.01 0.02798 0.01734 0.86432

22 0.001 0.02282 0.01395 0.87529

33 0.1 0.01971 0.01984 0.86621

33 0.01 0.02448 0.01664 0.91731

33 0.001 0.02178 0.01489 0.91466

Gold market

11 0.1 0.00486 0.00394 0.89441

11 0.01 0.00452 0.00362 0.92977

11 0.001 0.00518 0.00424 0.89826

22 0.1 0.00615 0.00528 0.86571

22 0.01 0.00661 0.00511 0.86957

22 0.001 0.00526 0.00593 0.87646

33 0.1 0.00576 0.00452 0.83258

33 0.01 0.00505 0.00384 0.82749

33 0.001 0.00489 0.00389 0.82021

Bitcoin market

11 0.1 0.03622 0.03106 0.81149

11 0.01 0.03464 0.02608 0.85393

11 0.001 0.03926 0.02807 0.81113

22 0.1 0.03666 0.03356 0.80768

22 0.01 0.03842 0.03121 0.76592

22 0.001 0.04158 0.03298 0.81942

33 0.1 0.03513 0.03050 0.82017

33 0.01 0.03957 0.03164 0.81856

33 0.001 0.03931 0.03818 0.78171
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TBCA portfolio includes only the traditional commodity assets (SPY, wheat, WTI, and 
gold). To evaluate the performance of our portfolios, we compare the results to that of 
the portfolios constructed using other strategies, similar indices, and funds, such as 
extended equal-weighted portfolio, traditional equal-weighted portfolio without Bitcoin, 
Dow Jones Commodity Index (DJCI), top field broad commodity ETF (FTGC), and top 
field Bitcoin ETF (GBTC) that only consists of digital assets.

Table 4  Robustness test with different datasets

Dataset RMSE MAE DA

Stock market

Set 95 0.00575 0.00470 0.90532

Set 90 0.00743 0.00733 0.93125

Set 85 0.00721 0.00635 0.89403

Set 80 0.00690 0.00334 0.88732

Wheat market

Set 95 0.00940 0.00723 0.97041

Set 90 0.00911 0.00680 0.94375

Set 85 0.00832 0.00653 0.93421

Set 80 0.00838 0.00758 0.94366

Crude oil market

Set 95 0.01525 0.01142 0.91715

Set 90 0.01589 0.01208 0.9625

Set 85 0.0164 0.01220 0.92715

Set 80 0.01221 0.00962 0.86619

Gold market

Set 95 0.00476 0.00380 0.88757

Set 90 0.00381 0.00311 0.93125

Set 85 0.00429 0.00337 0.94736

Set 80 0.00404 0.00339 0.92957

Bitcoin market

Set 95 0.03640 0.02750 0.92899

Set 90 0.03695 0.02718 0.88750

Set 85 0.03693 0.02860 0.92052

Set 80 0.03637 0.02825 0.94366
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The results in Table 5 and Fig. 7 show that our portfolio constructed using the rein-
forcement learning model outperformed the other portfolio, indices, and funds in 
terms of financial performances for all the trading periods in the analysis. First, our 
constructed EBCA and TBCA portfolios are unique in that they can maintain consist-
ent positive returns throughout all the trading intervals. In certain intervals, such as 
12/2018–02/2019, 06/2019–08/2019, 09/2019–11/2019, and 12/2019–02/2020, the 
other indices and funds experienced negative returns because most of the commodities 
in their portfolios experienced a decrease in their price. In comparison, our reinforce-
ment learning model uses the predicted returns to optimally allocate weights to maxi-
mize the Sharpe ratio of the portfolios.

Second, in comparison with DJCI and FTGC funds, our traditional commodity TBCA 
portfolio records a higher average volatility at 23.09%. This higher level of risk is attrib-
uted to the common diversification knowledge (Imbs and Wacziarg 2003; Guesmi et al. 
2019). As the selected indices and funds often consist of a large number of commodities, 
the risks of their portfolios are generally more diversified. In comparison, despite the 
higher volatilities, our TBCA portfolio is sufficiently diverse for individual investors as 
it contains four commodity assets across different sectors. Further, our portfolio yields 
significantly higher returns.

Third, the performance of our extended EBCA portfolio indicates that Bitcoin can 
yield better results when it is treated as a part of the portfolio rather than as a stand-
alone investment. Bitcoin is more volatile than other traditional commodities (Garcia 
et al. 2014; Yu et al. 2019). As a stand-alone investment, although it presents attractive 
returns in certain periods, its extreme volatilities make it a risky asset. For example, the 
GBTC ETF obtains a return of 113.91% in 03/2019–05/2019, while the portfolio volatil-
ity attains 103.04%. As a result, this “high risk, high reward” characteristic of Bitcoin 
exposes investors to significant risks. Compared with the GBTC funds, our EBCA port-
folio increases the average returns by 78% from 19.48 to 34.67% and significantly reduces 
the portfolio risk from 90.12 to 24.27%. By incorporating Bitcoin as part of our con-
structed portfolio, we can take advantage of the attractive returns of Bitcoin while limit-
ing the exposure to the risks of the asset, which may be a viable strategy for individual 
investors.

The results in Table 5 also show that our EBCA portfolio outperformed the TBCA tra-
ditional commodity portfolio in four of six intervals by achieving better Sharpe ratios. 
Overall, the EBCA portfolio obtains average financial returns of 20.08% with an aver-
age volatility of 23.09%. With the inclusion of Bitcoin as part of the portfolio, the aver-
age volatility of the portfolio throughout all the quarters increased by 5.1% to 24.27%. 
Despite the slight increase in portfolio risks, the average returns of the portfolio saw a 
significant jump to 34.67%, which resulted in a higher average Sharpe ratio. As Bitcoin 
is a highly volatile asset, an increase in portfolio risks is expected. However, the results 
indicate that the additional returns an investor can gain significantly outweigh the addi-
tional risks.

Looking at the asset allocation comparison between the portfolios in Table  6 and 
Fig.  8, our EBCA portfolio has given Bitcoin the most weight in the portfolio. At the 
same time, it controls its weight within a reasonable amount so that the risks can be 
diversified to the traditional commodities. Our findings indicate that much higher 
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returns can be achieved without being exposed to significant financial risks by including 
Bitcoin in the commodity portfolio.

Conclusion
Bitcoin has attracted significant attention from investors and policymakers in the 
global commodity market. Taking advantage of this asset due to its potential benefits 
and incorporating it as a part of the broad commodity trading portfolio will prove to be 
of great importance to investors and policymakers. In this paper, we propose a NEPO 
framework utilized for broad commodity assets, which integrates a deep learning-based 
model for future returns forecast and a reinforcement learning-based model for opti-
mizing the asset weight allocation.

In terms of forecasting future prices and returns of the broad commodity assets, 
the empirical results suggest that our proposed VMD-BiLSTM prediction model 
can effectively improve the prediction accuracy and the trend prediction ability 
consistently across various commodity assets, including stocks, agriculture, energy, 
precious metal, and cryptocurrency commodities, across different sectors. In terms 
of portfolio performances, the broad commodity portfolio constructed using our 
reinforcement learning-based optimizer achieves significantly higher returns and 
a better Sharpe ratio than other commodity funds, indices, and asset allocation 
strategies. In addition, by incorporating Bitcoin into the asset pool, our portfolio 
optimization framework can increase the financial performance of the broad com-
modity portfolio by taking advantage of its high returns and effectively reducing its 
inherent risks.

This study adds to the literature through multiple channels. First, our broad com-
modity portfolio optimization framework serves as an early attempt to incorporate 
Bitcoin in the asset pool. Further, it could be effectively used to increase the diversi-
fication premiums of the portfolio without greater exposure to investment risks. Our 
VMD-BiLSTM forecasting approach differs from other hybrid forecasting approaches 
applicable in financial time series analysis. It directly generates the forecasting results 
by simultaneously using all the extracted intrinsic modes as prediction model inputs. 
Our proposed model can effectively avoid the estimation errors that tend to accumu-
late in the current ensemble prediction approaches by eliminating the aggregation 
step. Finally, our proposed NEPO framework contributes to the artificial intelligence-
based portfolio optimization literature by broadening the optimizer’s weight allocation 
decisions from discrete to continuous action-space and considering the asset forecast-
ing errors in the weight allocation process. Thus, it improves the practicality as well 
as consistency with reality. By proposing a NEPO optimization framework, our study 
supports a promising trend in improving the portfolio allocation decision-making for 
broad commodity assets.

Although the results are promising, our study also faces certain limitations. For 
instance, our framework only uses structured data (asset prices) as input. Future stud-
ies can incorporate unstructured data such as news reports and social media sentiments 
to further improve the predictive ability of the framework. Moreover, for simplicity, we 
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do not consider associated costs such as inflation and other management costs. Consid-
ering and calculating these associated assets in future studies can further improve the 
model’s practicality.
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