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Introduction
Empirical studies consistently show that financial returns do not have a constant vola-
tility and instead exhibit volatility clustering. This clustering is often modeled using 
GARCH or one of its variants. Perhaps the most prominent alternative to GARCH is the 
class of discrete time stochastic volatility (SV) models. These models are very flexible 
and capture additional stylized features of financial returns including skewness, excess 
kurtosis, and leverage effects (Cont and Tankov 2004). SV models are often credited to 
Taylor (1986) although they have a long prehistory. See Shephard (2005) or Taylor (1994) 
for a thorough review.

A lot of research effort has focused on option pricing for SV models, much less atten-
tion has been paid to the problem of calculating risk. However, as we will see, this prob-
lem is not trivial even in the case when all of the parameters are explicitly known. In this 
paper, we introduce a Monte Carlo method for calculating expected shortfall (ES) for 
several important classes of SV models. ES is one of the best known and most commonly 
used measures of financial risk. It is, arguably, second in popularity only to Value-at-Risk 
(VaR). However, unlike VaR, ES is a coherent risk measure (Artzner et al. 1999) and it 
has been chosen to replace VaR as the measure determining a bank’s capital require-
ments in the Basel III regulatory framework (Basel Committee on Banking Supervision 
2013). For more information on VaR, ES, and related risk measures, see e.g. McNeil et al. 
(2015) and the references therein. A well-known survey on the estimation of ES is given 
in Nadarajah et al. (2014). Among a long list of methodologies, that paper discusses the 
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estimation of ES under a GARCH model. However, we have not seen a discussion of ES 
estimation under an SV model in the literature.

The difficulty in calculating ES for SV models lies in the fact that one needs to work 
with the product of two random variables and, even in the case where both terms in the 
product have simple distributions, the distribution of the product may be quite com-
plicated. This is in contrast with GARCH models, where the problem of evaluating ES, 
essentially, reduces to that of calculating ES for the distribution of the innovations.

The rest of this paper is organized as follows. In Sect.  2 we formally define the SV 
model and give a simple Monte Carlo method for evaluating ES in this case. In Sect. 3 
we give a more sophisticated Monte Carlo method in the commonly used case where 
the innovations for the returns and for the volatility are independent. In Sect. 4 we give 
a similar method for an important case with dependence, which aims to model leverage. 
In Sect. 5 we illustrate our methodology on four major US indices. Some conclusions are 
given in Sect. 6.

Stochastic volatility
Discrete time stochastic volatility models commonly assume that the financial (log) 
return, at time t, is given by

where

is the log variance. Here σ > 0 , |φ| < 1 , and µ ∈ R are parameters, and {ǫt} and {ηt} are 
sequences of independent and identically distributed (iid) random variables represent-
ing the innovations for rt and ht , respectively. We do not, in general, assume that for a 
given t, ǫt and ηt are independent of each other. Note that the log variance is modeled by 
an AR(1) process. The assumption that |φ| < 1 ensures that this process is weakly sta-
tionary, see Ruppert and Matteson (2015). Under general conditions on the distributions 
of the innovations, this model can be seen as a discretization of a continuous time SV 
model where the log variance is modeled by a process of Ornstein–Uhlenbeck type, see 
Taylor (1994) or Barndorff-Nielsen and Shephard (2001). We are interested in evaluating 
the ES for this model.

We begin by establishing some notation. Let Ft−1 denote the information set avail-
able at time t − 1 . For simplicity, we sometimes write Pt−1 to denote the condi-
tional probability Pt−1(·) = P(·|Ft−1) and Et−1 to denote the conditional expectation 
Et−1(·) = E(·|Ft−1) . For τ ∈ (0, 1) , the τ th VaR at time t, denoted by VaRτ (t) , is the 
smallest number for which Pt−1{rt < −VaRτ (t)} ≤ τ . Note that −VaRτ (t) is the τ th con-
ditional (given Ft−1 ) quantile of rt . For this reason, we sometimes write Qτ (rt |Ft−1) for 
−VaRτ (t) . The τ th ES at time t, denoted by ESτ (t) , is defined by

(1)rt = eht/2ǫt ,

(2)ht = µ+ φ(ht−1 − µ)+ σηt

ESτ (t) =
1

τ

∫ τ

0

VaRs(t)ds,
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when the integral exists, and is undefined otherwise. The parameter τ is typically chosen 
to be a small number such as 0.01, 0.025, or 0.05. Throughout, we assume 

1.	 that the distribution of rt is continuous, and
2.	 that it satisfies 

The second assumption ensures that ESτ (t) is well defined, while the first allows us to 
use the more explicit formula

Here and throughout, we write 1{·} to denote the indicator function.
Using the fact that the innovations are independent over time, together with basic 

properties of quantiles and expectations, we can write

where

a = Qτ

(
eσY /2Z

)
 is the τ th (unconditional) quantile of the random variable eσY /2Z , and 

the joint distribution of (Y, Z) is the same as the joint distribution of (ηt , ǫt) . The dif-
ficulty in evaluating M is that we must work with the distribution of X = eσY /2Z , which 
can be complicated even when the distributions of Y and Z are fairly simple. Little is 
known about the distribution of X even in the case where Y and Z are both standard 
normal random variables, see Yang (2008) and the references therein. For this reason, we 
develop Monte Carlo methods to approximate M(τ , σ).

We begin by approximating a = Qτ (e
σY /2Z) . Toward this end, fix some large integer 

N1 and simulate an iid sequence of bivariate random variables {(Yi,Zi)}N1

i=1 from the joint 
distribution of (ηt , ǫt) . Next, for i = 1, 2, . . . ,N1 , set Xi = eσYi/2Zi . Now sort these from 
smallest to largest to get X(1) ≤ X(2) ≤ · · · ≤ X(N1) . Finally, approximate a = Qτ (e

σY /2Z) 
by

where ⌊·⌋ is the floor function. One can also use a smooth approximation using kernel 
estimators, see e.g. Sheather and Marron (1990). However, we did not find much of an 
improvement when using these. Next, fix another large integer N2 and simulate a new iid 
sequence {(Yi,Zi)}N2

i=1 from the joint distribution of (ηt , ǫt) and approximate M(τ , σ) by

We note that, in principle one can use the same dataset to evaluate a and M(τ , σ) 
although for smaller sample sizes this may create bias. Either way, the difficulty with this 

(3)Et−1(|rt |) < ∞.

ESτ (t) = Et−1[−rt | − rt > VaRτ (t)] = −
1

τ
Et−1[rt1{rt < −VaRτ (t)}].

(4)ESτ (t) = −e{µ(1−φ)+φht−1}/2M(τ , σ),

(5)M(τ , σ) =
1

τ
E

[
eσY /2Z1{eσY /2Z < a}

]
,

(6)â = X(⌊τN1⌋),

(7)M̂1(τ , σ) =
1

N2τ

N2∑

i=1

eσYi/2Zi1{eσYi/2Zi ≤ â}.
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approach is that approximately (1− τ )100% of the simulated values will not satisfy the 
condition in the indicator function in (7) and will thus be thrown out. As such, very 
few values will actually be used in the sum. For this reason, we may need N2 to be an 
extremely large number to get a reasonable approximation. One could try to implement 
an importance sampling or related modification, but the fact that we are working with 
the product of two random variables, makes it difficult to use such an approach. Instead, 
we use the specific structure of this problem to implement an approach that works bet-
ter in several important situations.

Independent case
It is commonly assumed that the sequences {ǫt} and {ηt} are mutually independent. For 
simplicity and to ensure that the distribution of the returns is continuous, we assume 
that the distributions of ǫt and ηt are both continuous, having probability density func-
tions (pdfs) fǫ and fη , respectively. In order to guarantee that (3) holds, we must assume 
that

By a conditioning argument, we have

where

This can be used to develop a Monte Carlo method for approximating M(τ , σ) as fol-
lows. Fix some large integer N1 and simulate two mutually independent sequences of 
iid random variables {Yi}N1

i=1 and {Zi}N1

i=1 , where Yi ∼ fη and Zi ∼ fǫ . Use these to approxi-
mate a = Qτ (e

σY /2Z) by â as in (6). Now choose another large integer N2 and simulate 
Y1, . . . ,YN2

 iid from fη . We can then approximate M(τ , σ) by

We now give explicit formulas for H in several important situations. Throughout we 
assume that a ≤ 0 , which holds for all reasonable choices of τ . Perhaps the most com-
mon assumptions are that fǫ is the pdf of a standard normal distribution or a t-distribu-
tion. In the standard normal case we have

and in the case of a t-distribution with ν > 1 degrees of freedom we have

(8)E(|ǫt |) < ∞ and E(e0.5σηt ) < ∞.

M(τ , σ) =
1

τ
E

[
eσY /2Z1{eσY /2Z < a}

]
=

1

τ
E

[
eσY /2E

[
Z1{eσY /2Z < a}|Y

]]

=
1

τ
E

[
eσY /2H(Y , a, σ)

]
,

H(y, a, σ) = E

[
Z1{eσy/2Z < a}

]
=

∫ ae−σy/2

−∞
xfǫ(x)dx.

M̂2(τ , σ) =
1

N2τ

N2∑

i=1

eσYi/2H(Yi, â, σ).

(9)H(y, a, σ) =
−1
√
2π

e−
1
2
a2e−σy
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In the above, we need ν > 1 as otherwise (8) will not hold. In practice, it is often assumed 
that the distributions of returns are skewed. To capture this, skewed modifications of 
normal and t-distributions are often used. While there are a number of ways to intro-
duce such modifications, we follow the approach of Fernandez and Steel (1998). In gen-
eral, this approach can be described as follows. If f1 is the pdf of a distribution that is 
unimodal and symmetric around zero, then for γ > 0

is a skewed modification of f1 . The parameter γ determines the skew of the distribution. 
When γ = 1 the distribution is symmetric, when γ < 1 it has a negative skewness, and 
when γ > 1 it has a positive skewness. Using change of variables, it is straightforward to 
show that, if H1 corresponds to f1 , then

corresponds to fγ . We can easily apply this to get explicit formulas for H in the cases of 
skewed modifications of normal and t-distributions.

We now give a small simulation study to compare the performance of M̂1(τ , σ) and 
M̂2(τ , σ) . For these simulations we assume that ηt has a standard normal distribution, 
while for ǫt we consider two distributions: standard normal and student-t. The values of the 
parameters, σ and (in the case of the student-t distribution) ν , were calibrated according to 
the daily returns from January 2014 to December 2019 of the S&P 500 Index. This was done 
using the stochvol package for the statistical software R, see Kastner (2016). We also per-
formed similar simulations where the parameters were calibrated to the daily returns over 
the same period from the Russell 2000 Index, the Dow Jones Industrial Average, and the 
NASDAQ Composite Index. However, the results were similar and are not presented in the 
interest of space. Since our goal is to compare the two methods for evaluating M(τ , σ) , we 
do not want issues with calculating a to interfere with the comparison. For this reason we 
choose N1 = 3 ∗ 107 to be a large value and use the same value of â for all simulations with 
the same distribution. For N2 we consider a range of values from 100 to 5000 in increments 
of 100. For each value of N2 , we estimate M̂1(τ , σ) and M̂2(τ , σ) 1000 times and report the 
standard deviations and the means over these trials. For τ = 0.01 , the results are presented 
in Fig. 1. From the plots, we can see that the second method has significantly less variance 
and that the mean gets close to the true value much quicker. We also repeated the proce-
dure for τ = 0.025 and 0.05, but the results were similar and are thus omitted. We note that 
we cannot allow ηt to have a t-distribution, as this would violate assumption (8).

Model with leverage
In the literature of financial returns, the leverage effect is the empirically observed phe-
nomenon that volatility tends to be negatively correlated with returns, see e.g. Cont and 
Tankov (2004). In the important case where ηt and ǫt are jointly Gaussian, leverage is 

(10)H(y, a, σ) =
−
√
νŴ{(ν + 1)/2}

√
πŴ(ν/2)(ν − 1)

(1+ a2e−σy/ν)−(ν−1)/2.

fγ (x) =
2

γ + 1
γ

[f1(x/γ )1{0 ≤ x < ∞} + f1(x/γ )1{−∞ < x < 0}]

Hγ (y, a, σ) =
2

γ 3 + γ
H1(y, γ a, σ)
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often modeled by assuming that the joint distribution of the random vector (ηt , ǫt) fol-
lows a bivariate normal distribution N (0,�) where the covariance matrix is

for some ρ ∈ (−1, 1) , see Omori et  al. (2007). When ρ < 0 , the volatility is negatively 
correlated with the return, which captures the leverage effect. From properties of multi-
variate normal distributions, it follows that, in this case,

where W1,W2 are iid N(0,  1) random variables and d= denotes equality in distribu-
tion. There does not seem to be a standard way to model leverage in the non-Gaussian 
case. However, one approach is suggested, in a continuous time setting, by Eq.  (8) in 

(11)� =
[
1 ρ

ρ 1

]
,

ǫt
d= ρW1 +

√
1− ρ2W2

ηt
d= W1,
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Fig. 1  Results for τ = 0.01 . Results for M̂1(τ , σ) are in dashed (red) line and the ones for M̂2(τ , σ) are in solid 
(black) line. The dotted (blue) line corresponds to an approximation of M̂2(τ , σ) based on a sample of size 
N2 = 108 . a Results for ǫ ∼ N(0, 1) with σ = 0.3430 . Here, H is evaluated using (9). b Results for ǫ ∼ t37.9762 
with σ = 0.3228 . Here, H is evaluated using (10)
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Barndorff-Nielsen and Shephard (2001). The idea is to add a constant times the innova-
tion of the log volatility to the model for rt . A variant of this idea, which is consistent 
with how the Gaussian case is treated, is to consider the model

where ht is as in (2) and {δt} and {ηt} are mutually independent sequences of iid ran-
dom variables. The new parameter ρ ∈ (−1, 1) determines the dependence between the 
return and the volatility. When ρ = 0 , the model reduces to the independent case. Note 
that this is equivalent to taking

in (1). For simplicity we assume that the distribution of δ1 has pdf fδ.
We now give an approach for evaluating M(τ , σ) . In this case, we can write 

Z
d=ρW1 +

√
1− ρ2W2 and Y d=W1 , where W1,W2 are independent random variables with 

W1 ∼ fη and W2 ∼ fδ . It follows that

where

and

Here

is the cumulative distribution function (cdf ) of the distribution of δt and

rt = eht/2
(√

1− ρ2δt + ρηt

)
,

ǫt =
√

1− ρ2δt + ρηt

E

[
e
σY /2

Z1{eσY /2
Z < a}

]

= E

[
e
σW1/2(ρW1 +

√
1− ρ2W2)1{eσW1/2(ρW1 +

√
1− ρ2W2) < a}

]

= ρE

[
e
σW1/2W11{eσW1/2(ρW1 +

√
1− ρ2W2) < a}

]

+
√
1− ρ2E

[
e
σW1/2W21{eσW1/2(ρW1 +

√
1− ρ2W2) < a}

]

= ρE

[
e
σW1/2W1E

[
1{eσW1/2(ρW1 +

√
1− ρ2W2) < a}|W1

]]

+
√
1− ρ2E

[
e
σW1/2E

[
W21{eσW1/2(ρW1 +

√
1− ρ2W2) < a}|W1

]]

= ρE

[
e
σW1/2W1H1(W1, a, σ , ρ)

]

+
√
1− ρ2E

[
e
σW1/2H2(W1, a, σ , ρ)

]
,

H1(y, a, σ , ρ) = Fδ

(
e−σy/2a− ρy√

1− ρ2

)

H2(y, a, σ , ρ) = Gδ

(
e−σy/2a− ρy√

1− ρ2

)
.

Fδ(b) =
∫ b

−∞
fδ(x)dx, b ∈ R
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In the case where the distribution of δt is standard normal and b ≤ 0 , Gδ(b) = −ϕ(b) 
where ϕ(x) = e−x2/2/

√
2π  is the pdf of the standard normal distribution.

The above suggests the following Monte Carlo method. First, we approximate a by â as 
in (6). Next, choose a large integer N2 and simulate W1, . . . ,WN2

 iid from fη . We can then 
approximate M(τ , σ) by

We again perform a small simulation study to compare the performance of M̂1(τ , σ) and 
M̂2(τ , σ) . For these simulations we assume that δt and ηt are independent standard nor-
mal random variables, or equivalently that (ηt , ǫt) ∼ N (0,�) , where � is given by (11). 
The values of σ and ρ are calibrated according to the daily returns from January 2014 to 
December 2019 of the S&P 500 Index. This was again done using the stochvol package 
for R. For simulations we again took N1 = 3 ∗ 107 and N2 from 100 to 5000 in incre-
ments of 100 and repeated each simulation over 1000 iterations. The results for τ = 0.01 
are given in Fig. 2. We again see that the second method has less variance and that the 
mean gets close to the true value quicker. However, the differences are not as strong in 
this case. As before, we also considered the case where the parameters were calibrated to 
the other three indices and when τ = 0.025 and 0.05. Those results were similar and are 
not presented here in the interest of space.

Data analysis
In this section we perform a data analysis, where we estimate ES using SV models for 
four major US indices: the S&P 500 Index, the Russell 2000 Index, the Dow Jones Indus-
trial Average, and the NASDAQ Composite Index. In all cases we use daily returns from 

Gδ(b) =
∫ b

−∞
xfδ(x)dx, b ∈ R.

M̂2(τ , σ) =
1

N2τ

N2∑

i=1

eσWi/2
{
ρWiH1(Wi, â, σ , ρ)+

√
1− ρ2H2(Wi, â, σ , ρ)

}
.
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Fig. 2  Results for τ = 0.01 . Results for M̂1(τ , σ) are in dashed (red) line and the ones for M̂2(τ , σ) are in solid 
(black) line. Here the calibrated parameter values are σ = 0.4011 and ρ = −0.7596 . The dotted (blue) line 
corresponds to an approximation of M̂2(τ , σ) based on a sample of size N2 = 108
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January 2014 to December 2019. For the analysis, we used the first observations as his-
torical data and the last 500 observations for one-step ahead ES forecasts. The SV mod-
els that we consider are: 

1.	 (SV-N  ) ǫt and ηt are iid N(0, 1);
2.	 (SV-t2 ) ǫt and ηt are independent with ǫt ∼ t2 and ηt ∼ N (0, 1);
3.	 (SV-t cal) ǫt and ηt are independent with ǫt ∼ tν , where ν is calibrated to the data, 

and ηt ∼ N (0, 1);
4.	 (SV-lev) (ηt , ǫt) ∼ N (0,�) , where � is given by (11).

Models 1–3 assume that ǫt and ηt are independent, while Model 4 takes leverage into 
account.

The data analysis is performed as follows. We fix an index, an SV model, and a value 
of τ . For each of the last 500 observations, we use the stochvol package to calibrate the 
parameters of the SV model based on all of the observations before this one. The pack-
age gives multiple estimates for each parameter, and we take the mean of these as our 
estimate. We then use these parameter values to estimate ESτ using (4), where we eval-
uate M using M̂2 for the appropriate SV model. In all cases we take N1 = N2 = 5000 . 
Note that the parameter values are recalibrated for each observation. In the interest of 
space we only report the results for τ = 0.01 , although we also repeated the procedure 
for τ = 0.025 and 0.05. Figures 3,  4,  5 and 6 present the results for the four SV mod-
els, respectively. In each plot, we give the time series of the 500 data points, with the 
estimated −ESτ overlaid. These values of −ESτ are generally below the data, suggesting 
they do a good job of capturing risk. In Fig. 4, the values of −ESτ are too far below the 
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Fig. 3  Results for Model 1. The time series of returns is in solid (black) line and the one-step ahead forecasts 
of −ES are in dashed (red) line
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Fig. 5  Results for Model 3. The time series of returns is in solid (black) line and the one-step ahead forecasts 
of −ES are in dashed (red) line

1% ES − S&P500

Time

R
et

ur
ns

0 100 200 300 400 500

−0
.1

0
−0

.0
5

0.
00

0.
05

1% ES − Russell 2000

Time

R
et

ur
ns

0 100 200 300 400 500

−0
.1

0
−0

.0
5

0.
00

0.
05

1% ES − Dow Jones

Time

R
et

ur
ns

0 100 200 300 400 500

−0
.1

0
−0

.0
5

0.
00

0.
05

1% ES − NASDAQ

Time

R
et

ur
ns

0 100 200 300 400 500

−0
.1

0
−0

.0
5

0.
00

0.
05

Fig. 6  Results for Model 4. The time series of returns is in solid (black) line and the one-step ahead forecasts 
of −ES are in dashed (red) line
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values of the time series, suggesting that the tails of this model are too heavy and that 
we should use a larger value for the degrees of freedom. This is done in Fig. 5, where the 
degrees of freedom are calibrated to the data. These calibrated values are all in the range 
from 20 to 40 degrees of freedom.

We also compared the performance of our approach with three well-known bench-
mark methods: 

(1)	 (Hist) the historical method,
(2)	 (GARCH) the GARCH(1,1) method with normal innovations, and
(3)	 (DFGARCH) the distribution free GARCH(1,1) method.

For details see Nadarajah et al. (2014) or Christou and Grabchak (2021). We note that (2) 
is a special case of the QGARCH(1,1) method, where we take h = 1 , µ = 0 , and estimate 
the standard deviation using a GARCH(1,1) model, and that (3) is the filtered historical 
method based on a GARCH(1,1) filter. We compare the performance of the proposed SV 
methods with these benchmark methods using backtesting.

There are many backtests for ES available in the literature, see Lazar and Zhang (2019) 
or Deng and Qiu (2021) for an overview. Many popular approaches, such as those in 
Du and Escanciano (2017), make parametric or semiparametric assumptions. Since 
we are comparing models that make a variety of different assumptions, we choose two 
backtests that make no such assumptions. Before giving these, we define some notation. 
Fix a model and assume that for each time period t = 1, 2, . . . ,T  we use this model to 
estimate VaRτ (t) by V̂aRτ (t) and ESτ (t) by ÊSτ (t) . Our first backtest is from Acerbi and 
Székely (2014) and is based on

If we evaluate Z for several models, then the one where Z has the smallest absolute value 
is considered to be the best. An issue with this method is that it is sensitive to the esti-
mate of VaR . Since different methods estimate VaR differently, this can make the results 
not fully comparable. The second backtest does not require estimating VaR . It is from 
Embrechts et al. (2005) and is based on

where Dt = rt − {−ÊSτ (t)} and Q̂(τ ) is the empirical τ th quantile of {Dt}Tt=1 . As in the 
previous case, the method where V has the smallest absolute value is considered to be 
the best. The results of these two backtests are given in Tables 1 and 2.

We begin by considering the results of the first backtest. The best method is clearly 
DFGARCH, which has a significantly better performance than the other methods. At 
first glance SV-t2 appears to be one of the better models. However, this is likely an arti-
fact of the way that statistic Z works. It is unbounded in the negative direction, but 
bounded by 1 in the positive direction, which implies that it penalizes underestimation 
of ES more than it penalizes overestimation. We have already seen that SV-t2 drastically 

Z =
1

Tτ

T∑

t=1

rt I{rt > V̂aRt}
ÊSτ (t)

+ 1.

V =
∑T

t=1 DtI{Dt < Q̂(τ )}
∑T

t=1 I{Dt < Q̂(τ )}
,
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overestimates ES , thus we cannot take its performance on this backtest as evidence that 
it works well. Aside from this, the best performing SV model is clearly SV-lev. It beats 

Table 1  Backtesting results based on Z 

The method with the smallest absolute value is considered to be better

Method 1% 2.5% 5% 1% 2.5% 5%

SP500 Russell

SV-N − 3.662 − 2.092 − 1.140 − 1.895 − 1.252 − 0.687

SV-t2 0.725 0.672 0.586 1.000 0.917 0.777

SV-t cal − 3.190 − 1.583 − 0.793 − 1.842 − 0.828 − 0.446

SV-lev − 1.514 − 0.854 − 0.560 − 1.408 − 0.512 − 0.432

GARCH − 2.565 − 1.039 − 0.585 − 1.936 − 0.761 − 0.365

DFGARCH − 0.298 0.004 0.117 − 0.366 − 0.154 0.087

Hist − 1.310 − 0.813 − 0.545 − 0.831 − 0.205 − 0.434

Dow Jones NASDAQ

SV-N − 3.692 − 2.403 − 1.229 − 3.768 − 2.078 − 1.252

SV-t2 0.719 0.707 0.585 1.000 0.701 0.652

SV-t cal − 3.070 − 1.891 − 1.056 − 2.756 − 1.607 − 0.889

SV-lev − 2.268 − 1.162 − 0.608 − 1.906 − 0.990 − 0.712

GARCH − 3.121 − 1.425 − 0.608 − 2.662 − 1.082 − 0.673

DFGARCH − 0.367 − 0.148 0.020 0.004 − 0.039 0.071

Hist − 1.731 − 1.009 − 0.597 − 1.188 − 0.683 − 0.568

Table 2  Backtesting results based on V 

Method 1% 2.5% 5% 1% 2.5% 5%

SP500 Russell

SV - N − 0.013 − 0.011 − 0.008 − 0.006 − 0.008 − 0.006

SV - t2 0.032 0.024 0.016 0.068 0.044 0.029

SV - t cal − 0.014 − 0.011 − 0.007 − 0.012 − 0.008 − 0.005

SV - lev − 0.004 − 0.002 − 0.002 − 0.004 − 0.002 − 0.002

GARCH − 0.010 − 0.007 − 0.005 − 0.010 − 0.007 − 0.004

DFGARCH 0.002 1.437×10−4 0.612×10−4 − 0.001 − 0.002 − 0.001

Hist − 0.005 − 0.004 − 0.004 − 0.004 − 0.003 − 0.002

Dow Jones NASDAQ

SV - N − 0.014 − 0.012 − 0.008 − 0.013 − 0.012 − 0.009

SV - t2 0.032 0.025 0.016 0.045 0.032 0.021

SV - t cal − 0.016 − 0.012 − 0.008 − 0.016 − 0.012 − 0.008

SV - lev − 0.009 − 0.004 − 0.004 − 0.007 − 0.004 − 0.004

GARCH − 0.011 − 0.007 − 0.005 − 0.012 − 0.008 − 0.006

DFGARCH − 0.001 − 0.001 − 0.001 0.001 − 1.521×10−4 3.447×10−4

Hist − 0.007 − 0.006 − 0.005 − 0.006 − 0.004 − 0.005
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GARCH in all cases except for 5% with Russell and NASDAQ, where it performs slightly 
worse. Further, it is generally comparable to, although slightly worse than, Hist. We now 
turn to the second backtest. This method does not seem to have an asymmetry in penal-
izing underestimation and overestimation of ES . We can now clearly see that SV-t2 is the 
worst method. DFGARCH is again the best method. Here it is clear that SV-lev is second 
best, while Hist is a close third.

Conclusions
In this paper we considered the problem of estimating ES for SV models. To the best of 
our knowledge, this is the first paper to deal with this topic. We introduced two Monte 
Carlo methods, which are easy to implement in many common situations and can be 
used in both the case where the volatility is independent of the innovation and where 
there is dependence. This dependence aims to capture the leverage effect. Our simula-
tions suggest that the second method has a lower variance and converges faster. As such 
it is the method that we suggest using. The other method is primarily introduced as it 
is more straightforward and can thus serve as a benchmark. We evaluated several vari-
ants of our method on real-world data and compared the results with three benchmark 
methods. We saw, in particular, that the SV model with leverage performed very well in 
backtests, although it was not the best. We note that we only considered a few simple 
distributional assumptions in the data analysis and that our methodology works with 
many other distributions. We leave the question of which distributions are the best to 
use in conjunction with an SV model for future work. We now discuss a simple exten-
sion of our work.

Thus far we have only considered SV models, where the volatility follows an AR(1) 
process as defined in (2). However, nothing in our approach depends on this structure 
and we can replace (2) by

where gt−1 is any random variable that is measurable with respect to Ft−1 and is inde-
pendent of (ηt , ǫt) . In this case we have

where M(τ , σ) is as in (5). Thus, our approach easily extends to more complicated time 
series structures.

We conclude by noting that in both this more general SV model and the one that we 
considered earlier, the main thing that needs to be evaluated is M, which only depends 
on τ , σ , and the joint distribution of (ηt , ǫt) . In particular, it does not depend on gt−1 , 
which is only needed for a simple multiplicative term. Thus, if all parameters of the joint 
distribution of ǫt and ηt are known ahead of time, one can precompute the values of 
M(τ , σ) for the appropriate choice of τ on a grid of σ values. These can then be interpo-
lated to get values very quickly. In the case where τ = 0.01 and ǫt and ηt are independent 
standard normal random variables, a plot with this information is given in Fig. 7. The 
information in this plot, along with estimates of gt−1 , is all that is needed to evaluate ES 
in this case.

ht = gt−1 + σηt

ESτ (t) = −egt−1/2M(τ , σ),
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