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Abstract

Forecasting stock market returns is one of the most effective tools for risk
management and portfolio diversification. There are several forecasting techniques in
the literature for obtaining accurate forecasts for investment decision making.
Numerous empirical studies have employed such methods to investigate the returns
of different individual stock indices. However, there have been very few studies of
groups of stock markets or indices. The findings of previous studies indicate that
there is no single method that can be applied uniformly to all markets. In this
context, this study aimed to examine the predictive performance of linear, nonlinear,
artificial intelligence, frequency domain, and hybrid models to find an appropriate
model to forecast the stock returns of developed, emerging, and frontier markets.
We considered the daily stock market returns of selected indices from developed,
emerging, and frontier markets for the period 2000–2018 to evaluate the predictive
performance of the above models. The results showed that no single model out of
the five models could be applied uniformly to all markets. However, traditional linear
and nonlinear models outperformed artificial intelligence and frequency domain
models in providing accurate forecasts.
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Introduction
Theoretical and empirical studies have shown that a positive relationship exists be-

tween financial markets and economic growth (e.g., Levine, 1997; Rajan and Zingales,

1998; Rousseau and Watchel, 2000; Beck et al., 2003; Guptha and Rao, 2018). Given

the significance of financial markets, forecasting financial returns occupies a para-

mount position in investment decision making. However, stock markets are character-

ized by high volatility, dynamism, and complexity (Johnson et al., 2003; Cristelli, 2014;

Wieland, 2015). Movements in stock markets are influenced by several factors, such as

macro-economic factors, international events, and human behavior. Hence, forecasting

stock returns can become a challenging task. The profitability of investments in stock

markets highly depends on the predictability of stock movements. If a forecasting

model or technique can precisely predict the direction of the market, investment risk

and uncertainty can be minimized. It would enhance investment flows into stock
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markets and also be useful for policymakers and regulators in making appropriate deci-

sions and taking corrective measures.

There are two distinct schools of thought—namely, fundamental analysis and tech-

nical analysis—for predicting stock price movements. Fundamentalists forecast stock

prices on the basis of financial analyses of companies or industries. Technical analysts,

meanwhile, use historical securities data and predict future prices on the assumption

that stock prices are determined by market forces and that history tends to repeat itself

(Levy, 1967). These theories coexisted for several decades as strategies for investment

decision making. These approaches were challenged in the 1960s by random walk the-

ory, popularly known as the efficient market hypothesis (Fama, 1970), which proposes

that future changes in stock prices cannot be predicted from past price changes. Some

empirical studies have shown the presence of ‘random walk’ in stock prices (e.g., Tong

et al., 2014; Konak and Seker, 2014; Erdem and Ulucak, 2016). However, most empirical

studies have found that stock prices are predictable (Darrat and Zhong, 2000; Lo and

MacKinlay, 2002; Harrison and Moore, 2012; Owido et al., 2013; Radikoko, 2014; Said,

2015; Almudhaf, 2018).

Various forecasting techniques are available for time series forecasting. Autoregres-

sive integrated moving average (ARIMA) models were proposed by Box and Jenkins

(1970) for time series analysis and forecasting. Some studies have been conducted by

employing ARIMA models to forecast stock market returns (Al-Shaib, 2006; Ojo and

Olatayo, 2009; Adebiyi and Oluinka, 2014; Mondal et al., 2014). Quite a few studies

found that ARIMA models produced inferior forecasts for financial time series data

(Zhang, 2003; Adebiyi and Oluinka, 2014; Khandelwal et al., 2015). To account for non-

linearities resulting from regime changes in economies, some researchers have used

Markov regime-switching models and threshold autoregressive (TAR) models assuming

nonlinear stationary processes to predict stock prices (Hamilton, 1989; Tong, 1990).

Tasy (1989) proposed a simple yet widely applicable model-building procedure for

threshold autoregressive models as well as a test for threshold nonlinearity. Gooijer

(1998) considered regime switching in a moving average (MA) model and used valid-

ation criteria for self-exciting threshold autoregressive (SETAR) model selection. Some

empirical studies comparing different methods with SETAR found that this method

produced superior results to linear models (e.g., Clements and Smith, 1999; Boero and

Marrocu, 2002; Boero, 2003; Firat, 2017).

In the late 1980s, a class of artificial intelligence (AI) models—such as feedforward,

backpropagation, and recurrent neural network models—were introduced for forecast-

ing purposes. The distinguishing features of artificial neural networks (ANN) are that

they are data-driven, nonlinear, and self-adaptive, and they have very few apriori as-

sumptions. This makes ANNs valuable and attractive for forecasting financial time

series. Among ANN models, the feed-forward neural network with a single hidden

layer has become the most popular for forecasting stock market returns (Zhang, 2003).

Many studies have shown that these models yield more accurate forecasts compared to

naïve and linear models (e.g., Ghiassi et al., 2005; Mostafa, 2010; Qiu et al., 2016; Aras

and Kocakoc, 2016).

In addition, there are various neural network models for forecasting stock returns. Lu

and Wu (2011) used the cerebellar model articulation controller neural network

(CAMC NN) model to forecast the stock market indices of the Nikkei 225 and the
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Taiwan Stock Exchange. The results showed that CAMC NN made more accurate fore-

casts than support vector regression and back-propagation neural network (BPNN)

models. Guresen et al. (2011) observed that classical ANN models and multilayer per-

ceptron (MLP) outperformed GARCH-class models for the NASDAQ index. Lahmiri

(2016) employed variational mode decomposition (VMD) based general regression

neural networks (GRNN) for four economic and financial data sets and found that

VMD-GRNN models outperformed the ARIMA model and other neural network

models. Nayak and Misra’s (2018) genetic algorithm-based condensed polynomial

neural network (GA-CPNN) improved the accuracy of forecasting stock indices com-

pared to radial basis function neural network (RBFNN) and multilayer perceptron and

genetic algorithm (MLP-GA) models. Zhong and Enke (2019) observed that techniques

such as deep neural networks using principal component analysis (PCA) and artificial

neural networks performed better than traditional models. However, most studies have

found that traditional ANN models, as well as ANN models combined with linear

models, produce more accurate forecasts than other models (e.g., Asadi et al., 2010;

Wang et al., 2011; Khandelwal et al., 2015; Mallikarjuna et al., 2018).

Recently, frequency-domain models, such as spectral analysis, wavelets, and Fourier

transformations, have been proposed to improve the forecasting accuracy of financial

time series. One widely used technique is singular spectrum analysis (SSA), which is a

robust nonparametric method with no prior assumptions about the data (Golyandina

et al., 2001; Hassani et al., 2013a). SSA decomposes a time series data into its compo-

nents and then reconstructs the series by leaving the random noise component before

using the reconstructed series to forecast the future points in the series (Hassani, 2007;

Ghodsi and Omer, 2014). Since most financial time series data sets exhibit neither

purely linear nor purely nonlinear patterns, the combination of linear and nonlinear,

i.e., hybrid techniques to model complex data structures for improved accuracy has

been proposed (Asadi et al., 2010; Khashei and Bijari, 2010; Khashei and Bijari, 2012;

Khandelwal et al., 2015; Ince and Trafalis, 2017). Khashei and Hajirahimi (2017) com-

pared linear and nonlinear models with hybrid models (HM) and concluded that hybrid

models perform better than individual models.

Only a few studies have aimed to find a suitable method for forecasting the stock

returns of a group of markets. Guidolin et al. (2009) evaluated the performance of lin-

ear and nonlinear models for forecasting the financial asset returns of G7 countries.

They found that nonlinear models, such as threshold autoregressive (TAR) and smooth

transition autoregressive (STAR) models, performed better than linear models in the

case of US and UK asset returns. Meanwhile, simple linear models such as random

walk and autoregressive models were better for French, German, and Italian asset

returns. This suggests that no single model is suitable for forecasting the returns of all

stock markets. Awajan et al. (2018) compared the performance of several forecasting

methods by applying them to six stock markets and found that the empirical mode de-

composition Holt–Winters method (EMD-HW) provided more accurate forecasts than

other models.

Though there are various techniques for forecasting stock market returns, no single

method can be employed uniformly for the returns of all stock markets. The literature

indicates that there is no consensus among researchers regarding the techniques for

forecasting stock market returns. The present study, therefore, aimed to evaluate
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different forecasting techniques—namely, ARIMA, SETAR, ANN, SSA, and HM

models, representing linear, nonlinear, artificial intelligence (AI), frequency domain,

and hybrid methods, respectively—as applied to individual stock markets. This study

also examined the suitability of different forecasting methods for each category of the

world stock markets—namely, developed, emerging, and frontier. Finding a single

method that can produce optimal forecasts for all markets could help investors save

time and resources and make better decisions. This study is mainly useful for inter-

national investors and foreign institutional investors who wish to minimize risks and

diversify their portfolios, with the aim of maximizing profits. The objectives of the

present study are outlined below.

Objectives

1. To forecast stock market returns using linear, nonlinear, artificial intelligence,

frequency domain, and hybrid methods.

2. To find the most appropriate forecasting techniques among the five above-

mentioned techniques for developed, emerging, and frontier markets.

3. To check whether any single technique can be applied to all markets to obtain

optimal forecasts.

The rest of this paper is organized as follows. Section 2 describes the data and

methods employed in the study. Section 3 presents the empirical results. Finally, the

conclusions are given in section 4.

Data and methodology
In accordance with the objectives of this study, we considered three types of markets—

developed, emerging, and frontier—based on the Morgan Stanley Capital International

classification (MSCI, 2018). The market indices taken for the developed category are

Australia (ASX 200), Canada (TSX Composite), France (CAC 40), Germany (DAX),

Japan (NIKKEI 225), South Korea (KOSPI), Switzerland (SMI), United Kingdom (FTSE

100), and the United States (S&P 500). Those for emerging markets are Brazil (BOVE-

SPA), China (SSEC), Egypt (EGX 30), India (SENSEX), Indonesia (IDX), Mexico (BMV

IPC), Russia (MOEX), South Africa (JSE 40), Thailand (SET), and Turkey (BIST 100).

Lastly, those in the frontier category are Argentina (S&P MERVAL), Estonia (TSEG),

Kenya (NSE 20), Sri Lanka (CSE AS), and Tunisia (TUNINDEX). The daily closing

prices of these indices for the period 1 January 2000 to 30 December 2018 were ob-

tained from the website www.investing.com.

Asset returns (Rt) were calculated from the closing prices of all indices using the

formula:

Rt ¼ Pt−Pt−1ð Þ
Pt−1

�100 ð1Þ

Where, Pt is the price of the asset in the current time period and Pt − 1 is the price of

an asset in the previous time period.
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Autoregressive integrated moving average (ARIMA)

Proposed by George Box and Gwilym Jenkins in 1970, ARIMA models are among the

most popular linear models. In ARIMA models, the future value of a variable is ob-

tained through a linear function of some past observations of the variable and some

random errors. The process that generates the time series has the form of:

yt ¼ cþ ϕ1yt−1 þ ϕ2yt−2……:;ϕpyt−p þ θ1εt−1 þ θ2εt−2…:θqεt−q þ et; ð2Þ

where yt is the variable that will be explained at time t; c is the constant or intercept

;ϕi(i = 1, 2,…p) and θj(j = 1, 2,…. q) are the model parameters; p and q are integers and

are often referred to as AR and MA orders of the model, respectively; and et is the error

term. The assumption regarding the random errors εt is that they are independently

and identically distributed with a mean zero and constant variance of σ2. This model

involves a three-step iterative process of identification, estimation, and diagnostic

checking. The identification step involves specifying a tentative model by deciding the

order of the AR (p) and MA (q) terms. Once a tentative model is specified, the parame-

ters of the model must be estimated, in such a way that the overall measure of errors is

minimized, which is generally done with a nonlinear optimization procedure. After the

estimation of parameters, diagnostic checking for the adequacy of the model must be

done, which involves testing whether the model assumptions about the errors εt are

satisfied. If the model is adequate, one can proceed to forecast; if not, a new tentative

model must be identified following the parameter estimation and model verification.

This process with three steps must be repeated until a satisfactory model is selected to

forecast the data.

Self-exciting threshold autoregressive (SETAR)

The SETAR model, developed by Tong (1983), is a type of autoregressive model that

can be applied to time series data. This model has more flexibility in the parameters

which have regime-switching behavior (Watier and Richardson, 1995). Regime switch-

ing in this model is based on the dependent variable’s self-dynamics, i.e. self-exciting.

In other words, the threshold value in the SETAR model is related to the endogenous

variable whereas, in the TAR Model, it is related to an exogenous variable. This model

assumes a different autoregressive process in accordance with particular threshold

values. SETAR models have the advantage of capturing a commonly observed nonlinear

phenomenon which cannot be captured by linear models like exponential smoothing

and ARIMA models.

A Threshold Autoregressive model can be transformed into a SETAR model if the

threshold variable is taken as a lagged value of the time series itself. The SETAR model

with two regimes is specified as:

yt ¼
α0 þ

Xp
i¼1

αiyt−i þ εt if yt−d ≤τ

β0 þ
Xp
i¼1

βiyt−i þ εt if yt−d > τ

;

8>>><>>>: ð3Þ

where αi and βi are autoregressive coefficients, p is the order of the SETAR model, d is

the delay parameter, and yt − d is the threshold variable, εt is a series of random variables
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that are independent and identically distributed with mean 0 and variance σ2
ε . τ is the

value of the threshold, and if the value of τ is known, the observations can be separated

based on their value in comparision to the threshold, i.e. whether yt − d is below or

above the threshold. Then, by using the ordinary least squares method, the AR model

is estimated (Ismail and Isa, 2006). The threshold value must be determined along with

other parameters of the SETAR model, since the threshold value is unknown in

general.

Artificial neural networks (ANN)

Artificial Neural Networks are one of the flexible computing frameworks, that can be

used for modeling a broad range of nonlinear data. The major advantages of ANN

models are that they are data-driven and universal approximators, which can approxi-

mate a large class of functions with great accuracy. This model-building process does

not require any prior assumptions about the model form since the characteristics of

the data determine the network model. A feedforward neural network with a single

hidden layer is one of the most widely used method to forecast the time series data

(Zhang, 2003). The structure of the model is defined by a network of three layers of

simple processing units connected by acyclic links. The mathematical representation of

the relationship between output yt and the inputs (yt − 1, yt − 2, … .. yt − p) can be defined

as:

yt ¼ w0 þ
Xq
j¼1

wj:g w0; j þ
Xp
i¼1

wij:yt−1

 !
þ εt ; ð4Þ

where wj (j = 0, 1, 2, …,q) and wij (i = 0, 1, 2, … ..,p; j = 0, 1, 2, …,q) are the connection

weights or the model parameters, p is the number of input nodes, and q is the number

of hidden nodes. The transfer function of the hidden layer is given by the logistic

function:

Sig xð Þ ¼ 1
1þ exp −xð Þ : ð5Þ

Hence, the ANN model in eq. 4 performs the nonlinear functional mapping from

past observations (yt − 1, yt − 2, … .. yt − p) to the future value yt—that is,

yt ¼ f yt−1;…::; yt−p;w
� �

þ εt; ð6Þ

Where f is a function determined by the network structure and connection weights,

and w is a vector of all parameters. Thus, this neural network model is similar to an

autoregressive model with nonlinear functionality.

The choice of the value of q depends on the data, as there is no standard procudere

for determining this particular parameter. Another vital task of modeling ANN is the

choice of the input vector’s dimension and the number of lagged observations, p. This

is perhaps the most crucial parameter that is to be estimated in an artificial neural net-

work model, as the determination of the nonlinear autocorrelation structure of the time

series depends on this parameter. However, there is no rule of thumb that can be

followed to select the value of p. Therefore, often trials are conducted to select an opti-

mal value of p and q. After specifying the network structure with the parameters p, and
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q, it is ready for training. This is done with efficient nonlinear optimization algorithms,

such as gradient descent algorithms and conjugate gradient algorithms, other than the

basic backpropagation training algorithm (Hung, 1993).

In ANNs, the most widely used activation functions are the sigmoid functions.

Recently, in deep learning, several other functions have been suggested as alternatives

to the sigmoid function, such as the hyperbolic tangent (tanh) function, rectified linear

units (ReLU), softmax, and Gaussian. These functions are given below.

The hyperbolic tangent (tanh) function is one of the alternatives to the sigmoid func-

tion. It can be defined as:

tanh xð Þ ¼ 1−e−2x

1þ e−2x
: ð7Þ

This function is similar to the sigmoid function, however, it compresses real-value

number to a range between − 1 and 1; i.e., tanh (x) ∈(−1, 1).

Rectified linear units (ReLU) are defined as:

f xð Þ ¼ max 0; xð Þ; ð8Þ

Where x is the input for a neuron. In other words, the activation is simply set at a

threshold of zero. The range of the ReLU is between 0 and ∞.

The softmax function, also called as normalized exponential function is a

generalization of the logistic function that ‘compresses’ a K-dimensional vector Z from

random real values to a K-dimensional vector σ(z) of real values in the range [0,1],

which add up to 1. The function is defined as:

σ zð Þ j ¼
ez jXK

k¼1

ezk
; j ¼ 1; 2;…;K : ð9Þ

The Gaussian activation functions are bell-shaped curves that are continuous. The

node output is interpreted depending on how close the net input is for a chosen value

of average, i.e. it is interpreted in terms of class membership (1 or 0). The function is

defined as:

f xð Þ ¼ 1ffiffiffiffiffiffiffiffi
2πσ

p e
− x−μð Þ2
2σ2 ð10Þ

Singular Spectrum analysis (SSA)

Some studies have employed the SSA method to forecast financial time series (Hassani

et al., 2013b; Ghodsi and Omer, 2014). The SSA method comprises two stages, one is de-

composition and the other is reconstruction. In the first stage, the time series is decom-

posed to separate the signal and noise, then in the second stage, the series with less noise

is reconstructed and applied to forecast by using the following steps (Hassani, 2007):

Step 1. Embedding. Embedding can be considered a mapping that transfers a one-

dimensional time series YN = (y1,…, yN) to a multi-dimensional series X1, …,XK with vec-

tors Xi = (yi,…, yi + L − 1)
T ϵ RL, where L (2 ≤ L ≤N − 1) is the window length, and K =N

− L + 1. The result of this step is the trajectory matrix.
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Χ ¼ Χ1;…;ΧK½ � ¼ Χij
� �L;K

i; j¼1

Step 2. Singular value decomposition (SVD). In this step, the SVD of X is imple-

mented. Denoted by λ1…. , ,λL the eigenvalues of XXT arranged in decreasing order (λ1, ,
≥ … ≥ λL ≥ 0) and by U1…. , ,UL the corresponding eigenvectors. The SVD of X can be

written as X = X1 +… + XL, where, Xi ¼
ffiffiffiffi
λi

p
UiVT

i .

Step 3. Grouping. This step involves splitting the elementary matrices into several

groups and then adding the matrices within each group.

Step 4. Diagonal averaging. The main objective of diagonal averaging is to transform

a matrix into the Hankel matrix form, which can be later converted into a time series.

Step 5. Forecasting. There exist two forms of SSA forecasting: recurrent singular

spectrum analysis (RSSA) and vector singular spectrum analysis (VSSA). In this study,

we employed RSSA. Let V 2 ¼ π2
1 þ…þ π2

r where πi is the last component of the

eigenvector Ui(i = 1,…, r). Additionally, for any vector U ϵ RL, denote by U∇ϵ RL − 1 the

vector comprising of the first L − 1 components of the vector U. Let YN + 1, …YN + h

show the h terms of the SSA recurrent forecast. Then, we can obtain the h-step ahead

forecasts by using the following formula.

yt ¼
eyi for i ¼ 1;…;NXL−1

j¼1

α jyi− j for i ¼ N þ 1;…N þ h ;

8><>: ð11Þ

where eyi ði ¼ 1;…;NÞ is the reconstructed series, and vector A = (α1, …, αL − 1) can be

computed by

A ¼ 1
1−v2

Xr
i¼1

πiU
∇
i : ð12Þ

Hybrid model (HM)

Either purely linear or purely nonlinear models might not be adequate for predicting

stock returns since the stock returns are complex in nature. Even data-driven ANNs

have produced mixed results in forecasting the time series data. For example, Denton

(1995) used simulated data and found that when there is multicollinearity or outliers in

the data, neural networks can forecast the data better than the linear regression models.

The sample size and noise level play a crucial role in determining the performance of

ANNs for linear regression problems (Markham and Rakes, 1998). Therefore, it might

not be useful to apply ANNs for all types of data.

Given the complexities in the stock market data, a method that can handle both the

linear and nonlinear data, i.e., hybrid model might be an alternative for forecasting. Lin-

ear and nonlinear aspects of the underlying patterns in the data can be captured by

combining different models.

It might be useful to consider time series data consisting of linear autocorrelation

structure and a nonlinear component. That is,

yt ¼ Lt þ Nt; ð13Þ

where Lt represents the linear component and Nt denotes the nonlinear component.

Initially, we must apply a linear model for the data, and then the residuals from the
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linear model would contain only the nonlinear relationship. These residuals can be

defined as: Let et denote the residual at time t from the linear model, then:

et ¼ yt−yt þ L̂t; ð14Þ

Where, L̂t is the forecast value at time t from the estimated relationship from eq. 13.

Residuals are very crucial in diagnosing the adequacy of linear models because the pres-

ence of linear correlation in the residuals indicates the inadequacy of the linear model.

In addition, any significant nonlinear pattern in the residuals also indicates the limita-

tion in the linear model. Nonlinear relationships can be discovered by modeling resid-

uals using ANNs. The ANN model for residuals with n input nodes will be:

et ¼ f et−1; �et−2; �… � :: � et−nð Þ þ εt ; ð15Þ

Where f is a nonlinear function determined by the neural network, and εt is the ran-

dom error. Denoting the forecast from (13) as N̂ t , the combined forecast will be:

ŷt ¼ L̂t þ N̂ t ; ð16Þ

where ŷt is the estimated value from the hybrid model, which is a combination of lin-

ear and nonlinear models. We used the inverse mean square forecast error (MSFE) ra-

tio to determine the optimal weights for the hybrid models as it is a widely used

method with a robust theoretical background (Bates et al., 1969).

For M models, the combined h-step ahead forecast is:

ŷtþh ¼
XM
m¼1

wm;h;t ŷtþh;m; ð17Þ

wm;h;t ¼
1=msfem;h;t

� �k
PM

j¼1 1=msfem;h;t

� �k ; ð18Þ

where ŷtþh;m is the point forecast for h steps ahead at time t from model m. In sum-

mary, this hybrid method contains two steps. The first step is to employ the ARIMA to

model the linear part of the data. The second step is to apply ANN to model the resid-

uals obtained from the ARIMA, these residuals have information about the nonlinearity

in the data. The results from the ANN model can be used as forecasts for the error

terms for the ARIMA model. In the manner mentioned above, the hybrid model

encompasses the characteristics of the ARIMA and ANN models in modeling time

series data. Thus, it could be beneficial to employ hybrid models to improve the accur-

acy of the forecasts.

Forecast performance measures

The accuracy of forecasts indicates how well a forecasting model predicts the chosen

variable. Different accuracy measures are used to validate the suitability of a model for

a given data set. There are several accuracy measures in the literature, such as mean

error (ME), mean absolute error (MAE), mean absolute percentage error (MAPE),

mean squared error (MSE), and root mean squared error (RMSE). In this study, we

used RMSE because it is one of the most appropriate methods for measuring forecast-

ing accuracy for data on the same scale, and this criterion has been employed in several
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previous studies (Lu and Wu, 2011; Wang et al., 2011; Hyndman and Athanasopoulos,

2015; Makridakis et al., 2015). Also, Chai and Draxler (2014) suggested that RMSE is a

suitable measure for models with normally distributed errors. The present study found

that the errors in most of the models follow the normal distribution.

If Yt is the actual observation for time period t, and Ft is the forecast for the same

period, then the error is defined as:

et ¼ Y t−Ft; ð19Þ

MAE ¼ 1
n

Xn
t¼1

etj j; ð20Þ

MPE ¼ 1
n

Xn
t¼1

PEt ; ð21Þ

MAPE ¼ 1
n

Xn
t¼1

PEtj j; ð22Þ

Where,

PEt ¼ Y t−Ft

Y t

� �
�100 ð23Þ

The mean squared error (MSE) is:

MSE ¼ 1
n

Xn
t¼1

et
2; ð24Þ

and the root mean square error (RMSE) is:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

et
2:

s
ð25Þ

Empirical results
Here, we present the empirical results, comprising descriptive statistics and the per-

formance measures of various forecasting methods for stock returns in developed,

emerging, and frontier markets.

Descriptive statistics of stock returns

Tables 1, 2, and 3 present the summary statistics (e.g., mean, standard deviation, skew-

ness, kurtosis, JB statistic) for developed, emerging, and frontier stock market returns,

respectively. From these tables, we can see that the mean returns in all markets are

positive, indicating overall positive returns on investments during the period considered

for this study. The kurtosis values of the return series of all the markets are observed

to be greater than 3, indicating that all of the series are leptokurtic—i.e., they have thick

tails, which is a common phenomenon in stock returns (Bouchauda and Potters, 2001;

Humala, 2013; Mallikarjuna et al., 2017). The Jarque–Bera test showed that the series

are non-normally distributed. Another key feature, from the Tsay (1989) test, is that

the returns of all the markets are nonlinear.
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Results of forecasting methods

Before applying the forecasting methods, we divided the data into the training set and

the test set; we used 80% of the data for training the models and the remaining 20% for

testing the models. To forecast the returns using the ARIMA (p, d, q) model, it was ne-

cessary to check stationarity to have valid inferences. To test the stationarity of the

returns series, we employed the augmented Dickey–Fuller (1979) and Phillips–Perron

(1988) tests; the results showed that the returns of all of the markets were stationary.

We determined the optimal lag length for the autoregressive (p) and moving average

(q) components using the Akaike information criterion (AIC). We observed different

Table 1 Descriptive Statistics for Developed Markets

Country Mean Standard Deviation Skewness Kurtosis Jarque–Bera Statistic Tsay Test

Australia 0.016900 0.981318 − 0.366178 8.451780 5732.678
(0.00000)

Nonlinear

Canada 0.016719 1.043102 −0.466783 13.58932 21,277.95
(0.00000)

Nonlinear

France 0.005790 1.429676 0.141474 8.712746 6275.928
(0.00000)

Nonlinear

Germany 0.021703 1.475373 0.097060 8.111260 4987.257
(0.00000)

Nonlinear

Japan 0.019562 1.501151 −0.211389 9.413287 7642.163
(0.00000)

Nonlinear

Korea 0.040316 1.384506 −0.350392 9.724636 8473.831
(0.00000)

Nonlinear

Switzerland 0.007731 1.174780 −0.012284 10.18851 9766.624
(0.00000)

Nonlinear

UK 0.009243 1.171826 −0.004334 9.918071 9061.453
(0.00000)

Nonlinear

US 0.020694 1.147998 −0.089045 12.10219 15,630.08
(0.00000)

Nonlinear

Table 2 Descriptive Statistics for Emerging Markets

Country Mean Standard Deviation Skewness Kurtosis Jarque–Bera Statistic Tsay Test

Brazil 0.055547 1.769091 0.075096 7.347967 3439.261
(0.00000)

Nonlinear

China 0.016499 1.585054 −0.218775 7.684998 4025.909
(0.00000)

Nonlinear

Egypt 0.079649 1.658833 −0.121416 13.15053 18,891.65
(0.00000)

Nonlinear

India 0.059777 1.414324 0.120611 12.83913 17,795.20
(0.00000)

Nonlinear

Indonesia 0.070676 1.326156 −0.501572 9.570707 8083.189
(0.00000)

Nonlinear

Mexico 0.051820 1.213204 0.153714 9.356521 7644.352
(0.00000)

Nonlinear

Russia 0.082735 1.965327 0.370012 24.33804 85,492.66
(0.00000)

Nonlinear

South Africa 0.047609 1.298747 0.036830 6.299922 2044.612
(0.00000)

Nonlinear

Thailand 0.047775 1.263998 −0.520070 13.23751 19,417.31
(0.00000)

Nonlinear

Turkey 0.069655 1.973356 −0.037463 9.689365 8426.657
(0.00000)

Nonlinear
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orders of AR and MA for different series and present them along with RMSE values in

Tables 4, 5, and 6. In the SETAR model, the series exhibited nonlinear trends, and we

identified two regimes by the minimum AIC values. Then, the model was used to fore-

cast the returns of the markets. To forecast stock returns using the ANN model, we

employed feedforward neural networks since many studies have shown that they fit well

with asset return data (Zhang, 2003; Qiu et al., 2016). We employed a recurrent singu-

lar spectrum analysis (RSSA) model to forecast the returns after decomposing and

reconstructing the original returns series by following the four steps involved in fore-

casting with SSA: embedding, reconstructing, grouping, and diagonal averaging. For the

hybrid model, which is a combination of ARIMA and ANN, we fit the model by

employing the widely used inverse mean square forecast error (MSFE) ratio (Bates

et al., 1969; Winkler and Makridakis, 1983) for assigning the optimal weights for the

models in forecasting. Tables 4, 5, and 6 present the RMSE values of the test sets of the

forecast series for all techniques (i.e., ARIMA, SETAR, SSA, ANN, and HM) for devel-

oped, emerging, and frontier markets, respectively. The model with the lowest RMSE

was chosen as the most appropriate model. In addition, we tested RMSE significance

Table 3 Descriptive Statistics for Frontier Markets

Country Mean Standard Deviation Skewness Kurtosis Jarque–Bera Statistic Tsay Test

Argentina 0.120985 2.162861 0.018419 7.202958 3230.709
(0.00000)

Nonlinear

Estonia 0.052646 1.036820 0.316893 14.29612 24,406.12
(0.00000)

Nonlinear

Kenya 0.012726 0.831383 0.555709 15.16038 28,057.55
(0.00000)

Nonlinear

Tunisia 0.035152 1.292467 0.603647 20.46153 59,408.84
(0.00000)

Nonlinear

Sri Lanka 0.066494 1.128874 0.993308 43.75095 300,319.2
(0.00000)

Nonlinear

Table 4 RMSE Values of the Forecasting Models for Developed Markets

Country ARIMA SETAR ANN SSA HM

Australia ARIMA (1,0,0)
0.839708

0.8371075 0.839961 0.853739 0.8398178

Canada ARIMA (4,0,4)
0.7160948

0.7235669 0.7279448 0.721191 0.7178712

France ARIMA (2,0,3)
1.104531

1.104509 1.121098 1.13334 1.107893

Germany ARIMA (3,0,3)
1.137963

1.140388 1.156347 1.139859 1.138008

Japan ARIMA (1,0,1)
1.312612

1.307090 1.312699 1.319925 1.312697

South Korea ARIMA (1,0,2)
0.7815902

0.7845301 0.7816591 0.7975102 0.7815836

Switzerland ARIMA (3,0,3)
0.9262604

0.9252304 0.9262753 0.935211 0.9262085

UK ARIMA (3,0,2)
0.9002485

0.9003106 0.9093658 0.9194308 0.9057976

US ARIMA (2,0,0)
0.8197795

0.8125207 0.8171281 0.8187795 0.8119642
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using the Diebold–Marino test (1995) and found that the RMSE of all of the models

was significant, except for Japan, South Africa, and Sri Lanka.

From Tables 4, 5, and 6, we can observe that no single method performed uniformly

for all markets. However, the nonlinear model (i.e., SETAR) performed better than the

other models, producing optimal forecasts for 10 markets (i.e., four developed, four

emerging, and two frontier markets). This result contrasts with Guidolin et al. (2009).

In the case of developed markets, the SETAR model produced optimal forecasts for

four of the nine markets (Australia, France, Japan, and Switzerland). The ARIMA

model was optimal for Canada, Germany, and the UK, and the HM model was optimal

for South Korea and the US. Thus, we can say that nonlinear models are more suitable

for developed markets. Meanwhile, ANN and SSA models are not at all useful for de-

veloped markets since they did not provide any optimal forecasts.

For emerging markets, the SETAR model was found to be appropriate for four mar-

kets (Egypt, Mexico, Russia, Thailand). HM models were appropriate for three markets

(China, India, and South Africa) and ARIMA models for two (Brazil and Turkey). The

ANN model was appropriate for only one market (Indonesia), while the SSA model

Table 5 RMSE Values of the Forecasting Models for Emerging Markets

Country ARIMA SETAR ANN SSA HM

Brazil ARIMA (2,0,1)
1.441972

1.442167 1.442900 1.470025 1.442262

China ARIMA (3,0,3)
1.555623

1.570942 1.56378 1.555431 1.554521

Egypt ARIMA (0,0,1)
1.357198

1.324729 1.368285 1.385264 1.357206

India ARIMA (3,0,1)
0.838730

0.844534 0.839839 0.851503 0.838335

Indonesia ARIMA (1,0,0)
0.919355

0.926838 0.918685 0.921310 0.918988

Mexico ARIMA (2,0,1)
0.850496

0.848814 0.867506 0.851756 0.848878

Russia ARIMA (3,0,4)
0.996021

0.993842 1.008659 1.006565 1.000470

South Africa ARIMA (3,0,1)
1.062336

1.064449 1.063028 1.066819 1.061791

Thailand ARIMA (2,0,2)
0.756856

0.754199 0.770766 0.775997 0.762275

Turkey ARIMA (2,0,2)
1.280623

1.28606 1.292737 1.291581 1.283447

Table 6 RMSE Values of the Forecasting Models for Frontier Markets

Country ARIMA SETAR ANN SSA HM

Argentina ARIMA (1,0,0)
2.058513

2.046473 2.059416 2.067785 2.061399

Estonia ARIMA (1, 0, 2)
0.554262

0.576389 0.593064 0.567850 0.574015

Kenya ARIMA (2,0,2)
0.679084

0.656696 0.656707 0.680819 0.684070

Sri Lanka ARIMA (0,0,2)
0.443346

0.449314 0.444426 0.473222 0.445437

Tunisia ARIMA (1,0,0)
0.460538

0.44934 0.618865 0.443756 0.464829
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was not suitable for any emerging market. Though no single model was suitable for all

emerging markets, the SETAR and HM models were relatively more useful. Regarding

frontier markets, SETAR was suitable for Argentina and Kenya, ARIMA for Estonia

and Sri Lanka, and SSA for Tunisia. The ANN and HM models were not appropriate

for any market.

Out of twenty-four stock market indices, the SETAR model produced optimal fore-

casts for ten, ARIMA for seven, HM models for five, and ANN and SSA models for

one market each. From these results, we can observe that nonlinear models are more

useful for developed, emerging, and frontier markets alike. Another interesting observa-

tion is that the AI and frequency domain models were found to be appropriate only for

one market each. Thus, we can say that, even with advancements in AI and frequency

domain models, traditional statistical models have not become obsolete; they are still

useful and in fact better than AI and frequency domain models for forecasting financial

time series data.

Summary and conclusions
Over the years, stock markets have become alternative avenues for surplus funds among

individual and institutional investors, especially following globalization and the integration

of world financial markets. Given the inherent risk, uncertainty, and dynamic nature of

stock markets, accurately forecasting stock returns can help to minimize investors’ risks.

Thus, forecasting techniques can help with better investment decision making.

This study considered daily data for stock market returns during the period 1 January

2000 to 30 December 2018 to compare forecasting techniques (i.e., ARIMA, SETAR,

ANN, SSA, and HM models) representing linear, nonlinear, AI, frequency domain, and

hybrid methods. We took the stock indices of 24 stock markets in three market categories

(nine developed, ten emerging, and five frontier) to find suitable forecasting techniques

for each category. The results showed that no single forecasting technique provided uni-

formly optimal forecasting for all markets. However, SETAR performed better for ten

markets, ARIMA for seven, HM for five, and ANN and SSA for one market each. SETAR

and ARIMA techniques can thus be considered the clear winners in forecasting stock

market returns for developed, emerging, and frontier markets, as these two methods pro-

vided optimal forecasts for seventeen of the twenty-four markets.
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