Skip to main content

Table 7 Estimation result of Cubic approximation (egn.13)

From: Impact of learning through credit and value creation on the efficiency of Japanese commercial banks

  (1)
\(EVA\)
(2)
\(FISIM\) (GO)
(3)
Credit (tloans)
(4)
\(Secinv\)
(5)
\(TI\)
Full sample
\(ln{w}_{p}\) 0.8394 − 0.0374 0.2909*** 0.3839*** 0.2377***
  (0.5789) (0.1108) (0.0601) (0.1258) (0.0656)
\(ln{w}_{d}\) 0.5891*** 0.0555** 0.1129*** 0.1231*** 0.1259***
  (0.1088) (0.0279) (0.0223) (0.0260) (0.0230)
\(ln{w}_{k}\) − 0.2071 0.0590 0.0716 0.0609 0.0695
  (0.1957) (0.0670) (0.0602) (0.0699) (0.0625)
\(lnNPA\) − 0.0395 − 0.1130*** 0.0212 − 0.0224 0.0271
  (0.1282) (0.0269) (0.0159) (0.0330) (0.0181)
\({\varnothing }_{it-1}\) − 0.2299 − 0.9417** 5.7486* − 2.0566 0.8872
  (0.1664) (0.4648) (3.0760) (1.4622) (2.5243)
\({\left({\varnothing }_{it-1}\right)}^{2}\) 0.0163 0.0842** − 0.4362** 0.0716 − 0.1148
  (0.0278) (0.0370) (0.1949) (0.1055) (0.1582)
\({\left({\varnothing }_{it-1}\right)}^{3}\) 0.0003 − 0.0023** 0.0102** − 0.0009 0.0032
  (0.0012) (0.0010) (0.0041) (0.0025) (0.0033)
\(\_Con\) 3.2391 5.3041*** − 26.6792* 14.2604** − 2.2931
  (2.4567) (1.8542) (15.8901) (6.4147) (13.0633)
\(Obs\) 1687 1687 1687 1687 1687
\(R\_square\) 0.0855 0.3372 0.5822 0.5847 0.5872
\(F\) 10.3957 51.7086 89.3735 142.7922 89.8418
\(p\) 0.0000 0.0000 0.0000 0.0000 0.0000
\(rmse\) 1.1443 0.1380 0.1015 0.1779 0.1102
City banks
\(ln{w}_{p}\) 0.7469 − 0.1678 0.4931*** 0.7031*** 0.5531***
  (0.6236) (0.3111) (0.1012) (0.1429) (0.1152)
\(ln{w}_{d}\) 0.5775*** 0.3725* 0.2916*** 0.4892*** 0.3768***
  (0.1097) (0.1689) (0.0584) (0.1004) (0.0680)
\(ln{w}_{k}\) − 2.0536** − 0.4365 − 0.3899* − 0.6302 − 0.5387*
  (0.6376) (0.5029) (0.1733) (0.5044) (0.2499)
\(lnNPA\) 0.1352 − 0.0295 0.0573 − 0.1329** 0.0135
  (0.1432) (0.1022) (0.0309) (0.0451) (0.0334)
\({\varnothing }_{it-1}\) 2.1559 4.8406 18.1738 54.4984 151.0664
  (17.6303) (23.3113) (96.7778) (33.3907) (82.9505)
\({\left({\varnothing }_{it-1}\right)}^{2}\) − 0.4496 − 0.3837 − 0.9965 − 3.5532 − 8.6660
  (1.2969) (1.5760) (5.6554) (2.0481) (4.7594)
\({\left({\varnothing }_{it-1}\right)}^{3}\) 0.0184 0.0100 0.0182 0.0760 0.1652
  (0.0316) (0.0354) (0.1099) (0.0417) (0.0908)
\(\_Con\) 1.3247 − 17.3389 − 115.8322 − 275.8021 − 880.6086
  (75.3655) (113.2906) (551.2763) (180.7805) (480.7934)
\(Obs\) 74 74 74 74 74
\(R\_square\) 0.5825 0.3535 0.7835 0.7084 0.8172
\(F\) 11.3257 40.726 70.344 112.322 50.542
\(p\) 0.0000 0.0000 0.0000 0.0000 0.0000
\(rmse\) 0.3824 0.2499 0.0795 0.1788 0.0874
Regional Bank I
\(ln{w}_{p}\) 0.6056 − 0.0449 0.3379*** 0.4236** 0.2743***
  (0.9126) (0.1531) (0.0819) (0.1902) (0.0876)
\(ln{w}_{d}\) 0.6200*** 0.0469 0.1076*** 0.1194*** 0.1240***
  (0.1478) (0.0310) (0.0262) (0.0318) (0.0266)
\(ln{w}_{k}\) − 0.0686 0.0748 0.0790 0.0703 0.0767
  (0.1653) (0.0732) (0.0690) (0.0794) (0.0718)
\(lnNPA\) 0.1107 − 0.1440*** 0.0143 − 0.0005 0.0291
  (0.2052) (0.0338) (0.0222) (0.0514) (0.0263)
\({\varnothing }_{it-1}\) − 0.2618 3.5565** 17.0785 − 1.7361 11.1628
  (0.3066) (1.3716) (16.9818) (8.2992) (13.0859)
\({\left({\varnothing }_{it-1}\right)}^{2}\) 0.0137 − 0.3000** − 1.1727 0.0640 − 0.7698
  (0.0543) (0.1200) (1.1732) (0.6400) (0.8997)
\({\left({\varnothing }_{it-1}\right)}^{3}\) 0.0007 0.0086** 0.0261 − 0.0010 0.0171
  (0.0024) (0.0035) (0.0270) (0.0163) (0.0206)
\(\_Con\) 3.0454 − 11.6691** − 84.4241 11.4127 − 55.8601
  (3.6630) (5.2636) (81.7623) (35.2986) (63.1201)
\(Obs\) 999 999 999 999 999
\(R\_square\) 0.0793 0.3690 0.6033 0.5607 0.6019
\(F\) 6.7744 48.9343 65.9328 92.4020 57.4983
\(p\) 0.0000 0.0000 0.0000 0.0000 0.0000
\(rmse\) 1.1963 0.1276 0.1046 0.1765 0.1123
Regional bank II
\(ln{w}_{p}\) 0.8775 0.1474 0.1531* 0.2656 0.0527
  (0.7830) (0.1303) (0.0842) (0.1603) (0.0837)
\(ln{w}_{d}\) 0.7428*** 0.0733 0.1010** 0.1011* 0.1094**
  (0.2529) (0.0606) (0.0451) (0.0515) (0.0473)
\(ln{w}_{k}\) − 0.6926 0.0356 0.0617 0.0549 0.0592
  (0.6259) (0.1538) (0.1256) (0.1479) (0.1326)
\(lnNPA\) − 0.2432 − 0.1134** 0.0315 − 0.0237 0.0326
  (0.1785) (0.0427) (0.0260) (0.0451) (0.0275)
\({\varnothing }_{it-1}\) 0.3474 1.2743 − 3.2691 14.8398 14.2644
  (0.3148) (1.7088) (10.6298) (13.5675) (10.0397)
\({\left({\varnothing }_{it-1}\right)}^{2}\) − 0.0945 − 0.1295 0.1838 − 1.2967 − 1.0977
  (0.0602) (0.1542) (0.7531) (1.1002) (0.6998)
\({\left({\varnothing }_{it-1}\right)}^{3}\) 0.0058* 0.0045 − 0.0039 0.0359 0.0272
  (0.0029) (0.0046) (0.0177) (0.0296) (0.0162)
\(\_Con\) 4.5179 − 2.8296 16.7733 − 55.0559 − 62.6781
  (3.6815) (6.4268) (49.7791) (55.3558) (47.7211)
\(Obs\) 614 614 614 614 614
\(R\_square\) 0.1287 0.4698 0.5800 0.6492 0.6085
\(F\) 13.6980 33.4816 71.5356 93.8622 101.9037
\(p\) 0.0000 0.0000 0.0000 0.0000 0.0000
\(rmse\) 1.0992 0.1193 0.0918 0.1708 0.0994
  1. Driscoll–Kraay standard errors in parenthesis.
  2. ***p < 0.01; **p < 0.05; *p < 0.1
  3. \(\text{EVA}\sim \text{economic value added,}\)
  4. FISIM(GO) \(\sim \,\text{Financial Intermediation Services Indirectly Measured (Gross Output)}\)
  5. \(\text{secinv}\,\sim\, \text{total security investment},\)
  6. \(\text{tloans}\,\sim \text{total loans},\)
  7. \(TI\sim \text{Total Investment}\)
  8. \({\varnothing }_{it-1}\sim \text{learning elasticity}\)