Skip to main content

Table 3 Symmetric and asymmetric estimation results for exchange rates and commodities prices pass through to stock prices

From: Do the RMB exchange rate and global commodity prices have asymmetric or symmetric effects on China’s stock prices?

Exchange rate → Shanghai Composite Index

Exchange rate → Shenzhen Composite Index

Symmetric ARDL

NARDL

Symmetric ARDL

NARDL

\({sp}_{\mathrm{t}-1}\)

− 0.062***

(0.017)

\({sp}_{\mathrm{t}-1}\)

− 0.085***

(0.017)

\({sp}_{\mathrm{t}-1}\)

− 0.073***

(0.020)

\({sp}_{\mathrm{t}-1}\)

− 0.107***

(0.019)

\({neer}_{\mathrm{t}-1}\)

− 0.193

(0.159)

\({neer}_{\mathrm{t}-1}\)

− 0.661***

(0.180)

\({neer}_{\mathrm{t}-1}\)

− 0.112

(0.189)

\({neer}_{\mathrm{t}-1}\)

− 0.547***

(0.205)

\({comm}_{\mathrm{t}-1}\)

− 0.170***

(0.051)

\({comm}_{\mathrm{t}-1}^{+}\)

− 0.288***

(0.063)

\({comm}_{\mathrm{t}-1}\)

− 0.198***

(0.064)

\({comm}_{\mathrm{t}-1}^{+}\)

− 0.403***

(0.074)

\({fr}_{\mathrm{t}-1}\)

0.074*

(0.039)

\({comm}_{\mathrm{t}-1}^{-}\)

− 0.154***

(0.056)

\({fr}_{\mathrm{t}-1}\)

0.095**

(0.049)

\({comm}_{\mathrm{t}-1}^{-}\)

− 0.232***

(0.069)

\({i}_{\mathrm{t}-1}\)

0.014*

(0.007)

\({fr}_{\mathrm{t}-1}\)

0.104***

(0.039)

\({i}_{\mathrm{t}-1}\)

0.016*

(0.008)

\({fr}_{\mathrm{t}-1}\)

0.190***

(0.048)

\({ipi}_{t-1}\)

0.029

(0.066)

\({i}_{\mathrm{t}-1}\)

0.010

(0.007)

\({ipi}_{t-1}\)

0.052

(0.075)

\({i}_{\mathrm{t}-1}\)

0.001

(0.010)

\({m2}_{t-1}\)

− 0.022

(0.046)

\({ipi}_{t-1}\)

− 0.067

(0.067)

\({m2}_{t-1}\)

− 0.022

(0.052)

\({ipi}_{t-1}\)

− 0.006

(0.075)

\({\Delta }{sp}_{t-1}\)

0.235***

(0.065)

\({m2}_{t-1}\)

0.268**

(0.114)

\({\Delta }{sp}_{t-4}\)

0.201***

(0.063)

\({m2}_{t-1}\)

0.299**

(0.128)

\({\Delta }{comm}_{t-3}\)

− 0.310***

(0.102)

\({\Delta }{sp}_{t-4}\)

0.318***

(0.064)

\({\Delta }{neer}_{t-4}\)

− 1.156**

(0.451)

\({\Delta }{sp}_{t-4}\)

0.205***

(0.063)

\({\Delta }{fr}_{t}\)

− 0.799**

(0.337)

\({{\Delta }neer}_{\mathrm{t}-5}^{+}\)

1.588**

(0.619)

\({comm}_{t-3}\)

− 0.289**

(0.127)

\({{\Delta }neer}_{\mathrm{t}-1}^{-}\)

2.025***

(0.748)

\({\Delta }{fr}_{t-1}\)

1.003***

(0.350)

\({{\Delta }neer}_{\mathrm{t}-1}^{-}\)

1.689***

(0.637)

\({\Delta }{comm}_{t-4}\)

− 0.543***

(0.125)

\({{\Delta }neer}_{\mathrm{t}-3}^{-}\)

1.499**

(0.706)

Constant

1.730**

(0.777)

\({{\Delta }comm}_{\mathrm{t}-1}^{+}\)

0.444***

(0.138)

\({\Delta }{fr}_{t-1}\)

1.570***

(0.390)

\({{\Delta }comm}_{\mathrm{t}-1}^{-}\)

0.405**

(0.166)

  

\({{\Delta }comm}_{\mathrm{t}-3}^{+}\)

− 0.295*

(0.159)

\({\Delta }{fr}_{t-2}\)

0.990**

(0.403)

\({{\Delta }comm}_{\mathrm{t}-3}^{-}\)

− 0.372**

(0.185)

  

\({{\Delta }comm}_{\mathrm{t}-4}^{-}\)

− 0.417***

(0.159)

Constant

1.290

(0.899)

\({{\Delta }comm}_{\mathrm{t}-4}^{-}\)

− 0.599***

(0.181)

  

Constant

0.695***

(0.137)

  

\({\Delta }{fr}_{t-1}\)

1.319***

(0.407)

\({t}_{\mathrm{B}\mathrm{D}\mathrm{M}}\)

− 3.590

\({t}_{\mathrm{B}\mathrm{D}\mathrm{M}}\)

− 4.869**

  

\({\Delta }{fr}_{t-2}\)

1.162***

(0.401)

\({\mathrm{F}}_{\mathrm{P}\mathrm{S}\mathrm{S}}\)

3.640**

\({\mathrm{F}}_{\mathrm{P}\mathrm{S}\mathrm{S}}\)

5.891***

  

\({\Delta }{i}_{t}\)

− 0.021**

(0.010)

\({\beta}_{neer}\)

− 3.108

\({\beta}_{neer}\)

− 7.772***

  

Constant

0.653***

(0.124)

\({\beta}_{comm}\)

− 2.742***

\({\beta}_{{comm}^{+}}\)

− 3.386***

\({t}_{\mathrm{B}\mathrm{D}\mathrm{M}}\)

− 3.750

\({t}_{\mathrm{B}\mathrm{D}\mathrm{M}}\)

− 5.528***

\({\beta}_{fr}\)

1.198**

\({\beta}_{{comm}^{-}}\)

− 1.815***

\({\mathrm{F}}_{\mathrm{P}\mathrm{S}\mathrm{S}}\)

3.270*

\({\mathrm{F}}_{\mathrm{P}\mathrm{S}\mathrm{S}}\)

6.437***

\({\beta}_{i}\)

0.225*

\({W}_{LR,neer}\)

\({\beta}_{neer}\)

− 1.526

\({\beta}_{neer}\)

− 5.104***

\({\beta}_{ipi}\)

0.467

\({W}_{SR,neer}\)

0.017

\({\beta}_{comm}\)

− 2.697***

\({\beta}_{{comm}^{+}}\)

− 3.755***

\({\beta}_{m2}\)

− 0.350

\({W}_{LR,comm}\)

4.18**

\({\beta}_{fr}\)

1.290**

\({\beta}_{{comm}^{-}}\)

− 2.168***

  

\({W}_{SR,comm}\)

1.235

\({\beta}_{i}\)

0.218*

\({W}_{LR,neer}\)

  

\({\beta}_{fr}\)

1.227***

\({\beta}_{ipi}\)

0.710

\({W}_{SR,neer}\)

10.43***

  

\({\beta}_{i}\)

0.122

\({\beta}_{m2}\)

− 0.306

\({W}_{LR,comm}\)

5.354**

  

\({\beta}_{ipi}\)

− 0.793

  

\({W}_{SR,comm}\)

3.932**

  

\({\beta}_{m2}\)

3.148**

  

\({\beta}_{fr}\)

1.768***

      

\({\beta}_{i}\)

0.011

      

\({\beta}_{ipi}\)

− 0.060

      

\({\beta}_{m2}\)

2.790**

Diagnostic tests statistics

R2

0.358

R2

0.435

R2

0.427

R2

0.487

Adj-R2

0.316

Adj-R2

0.387

Adj-R2

0.383

Adj-R2

0.432

\({\mathrm{\chi }}_{\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}}^{2}\)

2.77

[0.250]

\({\mathrm{\chi }}_{\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}}^{2}\)

6.07**

[0.048]

\({\mathrm{\chi }}_{\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}}^{2}\)

9.75**

[0.008]

\({\mathrm{\chi }}_{\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}}^{2}\)

2.86

[0.239]

\({\mathrm{\chi }}_{\mathrm{s}\mathrm{c}}^{2}\)

4.011

[0.675]

\({\mathrm{\chi }}_{\mathrm{s}\mathrm{c}}^{2}\)

11.326*

[0.079]

\({\mathrm{\chi }}_{\mathrm{s}\mathrm{c}}^{2}\)

7.222

[0.301]

\({\mathrm{\chi }}_{\mathrm{s}\mathrm{c}}^{2}\)

10.259

[0.114]

\({\mathrm{\chi }}_{\mathrm{H}\mathrm{E}\mathrm{T}}^{2}\)

0.02

[0.877]

\({\mathrm{\chi }}_{\mathrm{H}\mathrm{E}\mathrm{T}}^{2}\)

2.37

[0.124]

\({\mathrm{\chi }}_{\mathrm{H}\mathrm{E}\mathrm{T}}^{2}\)

1.35

[0.245]

\({\mathrm{\chi }}_{\mathrm{H}\mathrm{E}\mathrm{T}}^{2}\)

0.000

[0.955]

\({\mathrm{\chi }}_{\mathrm{R}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{e}\mathrm{y}}^{2}\)

0.50

[0.684]

\({\mathrm{\chi }}_{\mathrm{R}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{e}\mathrm{y}}^{2}\)

0.98

[0.403]

\({\mathrm{\chi }}_{\mathrm{R}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{e}\mathrm{y}}^{2}\)

2.43*

[0.067]

\({\mathrm{\chi }}_{\mathrm{R}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{e}\mathrm{y}}^{2}\)

0.76

[0.517]

Cusum

stable

Cusum

Stable

Cusum

Stable

Cusum

Stable

  1. Notes: (1)***, ** and * denote significance at the 1%, 5%, and 10% levels, respectively; (2) maximum lag lengths of \({n}_{k}\) and \({l}_{k}\) are 6, and the general-to-specific approach is used to decide the final specifications by dropping all insignificant variables; (3) \({\beta}_{neer}\) and \({\beta}_{comm}\) indicate the symmetric long-run coefficients of the exchange rates and global commodity prices on China’s stock prices; \({\beta}_{{comm}^{+}}\) and \({\beta}_{{comm}^{-}}\) refer to the rising and falling long-run coefficients of global commodity prices on China’s stock prices; (5)\({\mathrm{F}}_{\mathrm{P}\mathrm{S}\mathrm{S}}\) indicates the Paseran-Shin-Smith F test statistic (2001), and following Shin et al. (2014), the conservative of critical values is adopted, k = 6, and the upper bound test statistics at 10%, 5% and 1% are 3.23, 3.61 and 4.43, respectively; the upper bound of \({t}_{\mathrm{B}\mathrm{D}\mathrm{M}}\) test statistics at 10%, 5%, and 1% are − 4.04, − 4.38 and− 4.99, respectively; (6)\({\mathrm{\chi }}_{\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}}^{2}\), \({\mathrm{\chi }}_{sc}^{2}\), \({\mathrm{\chi }}_{HET}^{2}\), and \({\mathrm{\chi }}_{Ramsey}^{2}\) denote the test of Normality, the Breusch-Godfrey LM test for serial autocorrelation, the Breusch-Pagan test for heteroskedasticity, and the Ramsey RESET test, respectively; (7)\({W}_{LR}\) refers to the Wald test for long-run symmetry, the relevant joint null hypotheses are \(-{\lambda }_{2}^{+}/{\lambda }_{1}=-{\lambda }_{2}^{-}/{\lambda }_{1}\) and \(-{\lambda }_{3}^{+}/{\lambda }_{1}=-{\lambda }_{3}^{-}/{\lambda }_{1}\) respectively, while \({W}_{SR}\) refers to the Wald test of short-run symmetry and the relevant joint null hypotheses are \({\sum }_{j=0}^{I2}{\delta }_{2,j}^{+}={\sum }_{j=0}^{I2}{\delta }_{2,j}^{-}\) and \({\sum }_{j=0}^{I2}{\tau }_{2,j}^{+}={\sum }_{j=0}^{I2}{\tau }_{2,j}^{-}\) respectively; (8) standard error and p-values are displayed in parentheses and brackets, respectively; (9) Cusum denotes the CUSUM and CUSUM squared test for stability of parameters