Skip to main content

Table 4 Results of GARCH and EGARCH models

From: Dynamics of oil price shocks and stock market behavior in Pakistan: evidence from the 2007 financial crisis period

 

GARCH model

EGARCH model

 

Pre-crises

Post-crises

 

Pre-crises

Post-crises

α0

0.154969**

(0.026322)

0.114691**

(0.017558)

α0

0.153675**

(0.025096)

0.089605**

(0.019572)

α1

0.068317** (0.025540)

0.140572**

(0.024231)

α1

0.061981*

(0.02573)

0.147118**

(0.023669)

ψ

0.014185

(0.010686)

0.018941**

(0.005445)

ψ

0.021001*

(0.010061)

0.035986**

(0.003204)

β0

0.197274**

(0.017770)

0.029230**

(0.003107)

β0

−0.23126**

(0.019195)

−0.231288**

(0.017791)

β1

0.236202**

(0.021655)

0.181986**

(0.014402)

β1

0.398443**

(0.029732)

0.299825**

(0.025086)

   

φ

−0.074287**

(0.017424)

−0.162797**

(0.016946)

β2

0.674075**

(0.021069)

0.801902**

(0.010664)

β2

0.861252**

(0.011513)

0.939410**

(0.006352)

δ (OP)

−0.049991**

(0.011195)

0.008880**

(0.000742)

δ (OP)

−0.024189**

(0.009345)

0.001229

(0.005441)

ARCH LM

0.139988

[0.7082]

0.242116

[0.6267]

 

0.422741

[0.5157]

0.032083

[0.8579]

  1. The figures in parenthesis are standard errors. The figures in braces are probabilities. The ARCH LM test is applied on residuals of each model for exploring autocorrelation and heteroskedasticity problem after estimation of models
  2. * and ** indicates p < 5% and 1% respectively
  3. The GARCH model is given as: \( {\mathrm{R}}_{\mathrm{t}\;\left(\mathrm{PSE}\right)}={\upalpha}_0+{\upalpha}_1\;{\mathrm{R}}_{\mathrm{t}\hbox{-} 1}+\psi {\mathrm{R}}_{\mathrm{t}\hbox{-} 1\;\left(\mathrm{OP}\right)}+{\upvarepsilon}_{\mathrm{t}},\kern0.6em {\mathrm{h}}_{\mathrm{t}\;\left(\mathrm{PSE}\right)}={\upbeta}_0+{\upbeta}_1\;{\upvarepsilon}_{\mathrm{t}\hbox{-} 1}^2+{\upbeta}_2\;{\mathrm{h}}_{\mathrm{t}\hbox{-} 1}+{\delta}_{\left(\mathrm{OP}\right)} \)
  4. The EGARCH model is given as: \( {\mathrm{R}}_{\mathrm{t}\;\left(\mathrm{PSE}\right)}={\upalpha}_0+{\upalpha}_1\;{\mathrm{R}}_{\mathrm{t}\hbox{-} 1}+\psi\;\mathrm{O}{\mathrm{P}}_{\mathrm{t}\hbox{-} 1}+{\upvarepsilon}_{\mathrm{t}},\kern0.6em \ln {\mathrm{h}}_{\mathrm{t}\;\left(\mathrm{PSE}\right)}={\upbeta}_0++{\upbeta}_1\;\left|\frac{\in_{\mathrm{t}}\hbox{-} 1}{\sqrt{{\mathrm{h}}_{\mathrm{t}\hbox{-} 1}}}\right|+\varphi\;\frac{\in_{\mathrm{t}}\hbox{-} 1}{\sqrt{{\mathrm{h}}_{\mathrm{t}\hbox{-} 1}}}+{\upbeta}_2\;{\mathrm{h}}_{\mathrm{t}\hbox{-} 1}+{\delta}_{\left(\mathrm{OP}\right)} \)