Fixed-price issuing $$\overline{E}(U)-\frac{1}{2}\rho {\sigma_1}^2$$ Ē(U) + V 2 − V $$\frac{\rho {\sigma_1}^2+2\left({V}_2-{V}_1\right)}{2\overline{E}(U)-\rho {\sigma_1}^2}$$ $$\frac{\rho {\sigma_1}^2}{2\overline{E}(U)-\rho {\sigma_1}^2}$$ $$\frac{2\left({V}_2-{V}_1\right)}{2\overline{E}(U)-\rho {\sigma_1}^2}$$
Book building issuing $$\frac{n{\sigma_2}^2\overline{E}(U)+{\sigma_1}^2{\displaystyle {\sum}_{i=1}^n{s}_i-\rho k}}{n\left({\sigma_1}^2+{\sigma_2}^2\right)}$$ $$\frac{{\sigma_2}^2\overline{E}(U)+{\sigma_1}^2V-n{\sigma_1}^2{\displaystyle {\sum}_{i=1}^n{s}_i}}{\left(n+1\right){\sigma_1}^2+{\sigma_2}^2}+{V}_2-{V}_1$$ $$\frac{k\rho {\sigma_1}^2{\sigma_2}^2+n\left({\sigma_1}^2+{\sigma_2}^2\right)\left({V}_2-{V}_1\right)}{n\overline{E}(U)\left({\sigma_1}^2+{\sigma_2}^2\right)-k\rho {\sigma_1}^2{\sigma_2}^2}$$ $$\frac{k\rho {\sigma_1}^2{\sigma_2}^2}{n\overline{E}(U)\left({\sigma_1}^2+{\sigma_2}^2\right)-k\rho {\sigma_1}^2{\sigma_2}^2}$$ $$\frac{n\left({\sigma_1}^2+{\sigma_2}^2\right)\left({V}_2-{V}_1\right)}{n\overline{E}(U)\left({\sigma_1}^2+{\sigma_2}^2\right)-k\rho {\sigma_1}^2{\sigma_2}^2}$$