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Abstract

Background: This article investigates the Least-Squares Monte Carlo Method by
using different polynomial basis in American Asian Options pricing. The standard
approach in the option pricing literature is to choose the basis arbitrarily. By
comparing four different polynomial basis we show that the choice of basis
interferes in the option's price.

Methods: We assess Least-Squares Method performance in pricing four different
American Asian Options by using four polynomial basis: Power, Laguerre, Legendre
and Hermite A. To every American Asian Option priced, three sets of parameters are
used in order to evaluate it properly.

Results: We show that the choice of the basis interferes in the option's price by
showing that one of them converges to the option's value faster than any other by
using fewer simulated paths. In the case of an Amerasian call option, for example,
we find that the preferable polynomial basis is Hermite A. For an Amerasian put
option, the Power polynomial basis is recommended. Such empirical outcome is
theoretically unpredictable, since in principle all basis can be indistinctly used when
pricing the derivative.

Conclusion: In this article The Least-Squares Monte Carlo Method performance is
assessed in pricing four different types of American Asian Options by using four
different polynomial basis through three different sets of parameters. Our results
suggest that one polynomial basis is best suited to perform the method when
pricing an American Asian option. Theoretically all basis can be indistinctly used
when pricing the derivative. However, our results does not confirm these. We find
that when pricing an American Asian put option, Power A is better than the other
basis we have studied here whereas when pricing an American Asian call, Hermite A
is better.

Keywords: Complex derivatives valuation, Least-Squares Monte Carlo Method,
Amerasian options, Polynomial basis
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Background
Asian options are often used for cash flow hedges in companies whose purchase

programming is set to mitigate the fluctuation of raw materials’ prices. Its versatility is

confirmed by its presence in markets like commodities, electric power, interest rates and

currency rates (McDonald 2006). Because they are complex (or exotic), the Asian options

are usually traded over the counter. The characteristics of the contract (subject, premium,

strike price, deadlines and maturity) are freely agreed between the parties, emphasizing

their non-standardization.

Traditional techniques such as the finite-differences method and lattice become less

attractive when dealing with pricing derivatives with multiple stochastic variables, prob-

lems with many dimensions, or even path-dependent American options, as it is the case

of American Asian (Amerasian) options. The most flexible technique for pricing exotic

options, such as American options, is the use of stochastic simulation with optimization

algorithm. This technique includes different methods, such as the Least-Squares Monte

Carlo method (LSM), first introduced by Longstaff and Schwartz (2001). Besides being

faster and more precise to compute than other methodologies, the LSM methodology

helps assess path-dependent American options with multiple dimensions and multiple

state variables, being also applied to Markovian and non-Markovian problems.

The Least-Squares Monte Carlo Method has been used to price American Asian

options. Longstaff and Schwartz (2001) exemplified the use of their technique in pri-

cing an American Asian Arithmetic Average Fixed Strike call option with a specific

polynomial basis, i.e., power. Moreno and Navas (2003) access the performance of

Least Squares Monte Carlo Method numerically, by using two different polynomial

basis, i.e., Laguerre and Hermite B, to value the same American Asian option priced by

Longstaff and Schwartz (2001). Moreno and Navas (2003) found that the choice of the

polynomial basis and the degree of these polynomials influence the estimated prices.

Chaudhary (2005) used quasi-random sequences to improve the performance of this

technique by pricing an American Asian Arithmetic Average call option without vary-

ing the polynomial basis used. In their experiment, they used power polynomial basis.

Also to access the performance of this techniques, Cerrato and Cheung (2007) priced

an American Asian Arithmetic Average call option using three sets of simulated trajec-

tories. They applied two different polynomial basis, i.e., exponential and Laguerre. Al-

though not dedicated to the task of pricing an American Asian option, other authors,

such as Glasserman (2004) states that “accuracy depends on the choice of basis func-

tions, which may require experimentation or good information about the structure of

the problem”.

In this paper, we apply the Least-Squares Monte Carlo method intensively to price

four different American Asian (Amerasian) options with four different polynomial

basis. We do this for both put and call option. To access the performance of this algo-

rithm, we use three sets of parameters.

The Least-Squares Monte Carlo Method
Every minute prior to the expiration date of an American option, the option holder

must choose the optimal outcome between exercising the option or keeping it for an-

other term. The choice is based on the immediate exercise payoff and the future payoff

expected. If the former is greater than the latter, then the option is exercised.
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Consistent with the no-arbitrage valuation theory, the continuation value is the risk-

neutral expectation of the discounted future cash flow, i.e.,:

F ω ; tkð Þ ¼ EQ
XK
j¼kþ1

exp −
Ztj

tk

r ω; sð Þds
0@ 1AC ω; tj; tk ;T

� �jℑ tk

24 35
Where,

F ω ; tkð Þ ≡ continuation value at time tk on sample path ω;
EQ :jℑ tk½ �≡risk‐neutral expectation conditional on ℑ tk ;
Q ≡ risk‐neutral probability measure;
r ω; sð Þ≡ riskless discount rate;
C ω; tj; tk ;T
� �

≡cash flows generated by the option conditional
on the option not being exercised at or prior to tk and on the option holder
following the optimal stopping strategy for all tj; tk < tj≤T ; and
ℑ tk≡ information set at time tk :

The idea of the Least-Squares Monte Carlo Method is to approximate the continu-

ation value by using least-squares regression at every moment in which it is possible to

exercise the option. The regression is done based on the data obtained for the state var-

iables via Monte Carlo simulation and by choosing the trajectories where the option is

in the money.

Within this context, whenever it is possible to exercise the option, the continu-

ation value can be expressed as a linear combination of orthogonal basis functions,

such as Power, Legendre and Laguerre polynomials. This follows from the Finance

Literature that considers the payoff functions that belong to the function space of

finite variance, represented by L2(Ω, ℑ,Q) 1
. Since this is a Hilbert space2, any

function F that belongs to this space can be written as a linear combination of or-

thogonal basis functions (Lima 2007); (Stentoft 2004). Thus, the same function F

can be rewritten as:

F ω ; tkð Þ ¼
XN
j¼0

αJΦJ ; αJ∈ℝ

where the polynomial basis, represented by Φj, is a function of one of the state vari-

ables. Note that the coefficients of the basis, αj, are not previously known, but they can

be estimated by linear regression. The properties of the estimator and the convergence

of the method are addressed algebraically by Clement et al. (2002) and Stentoft (2004).

When considering the number of basis to be used, it is important to point out a

problem mentioned by Moreno and Navas (2003). They analyze the use of a large num-

ber of basis and conclude that several degrees of the chosen polynomial basis and its

respective crossed products can increase the accuracy of the estimation. In some cases,

however, an excessive increase in the number of basis can reduce the precision of the

method, making it computationally expensive.

Methods
The Least-Squares Monte Carlo Method is applied in four different cases of Fixed-Start

Time Window3 American Asian options: Case 1 –Arithmetic Average Floating Strike
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American Asian option; Case 2 –Geometric Average Floating Strike American Asian

Option; Case 3 –Arithmetic Average Fixed Strike American Asian Option; and Case 4 –

Geometric Average Fixed Strike American Asian Option.

Following Moreno and Navas (2003), we use the Bermuda-Asian option as a discrete

approximation of the Amerasian option, whereby the price of the asset-object is

monthly noted. All the priced options have a term of one year, and can be exercised

from the third month of their issuance. It is assumed that the price of the asset-object

follows a risk-neutral Geometric Brownian Motion.

Based on matrix notation, in which every column represents a specific time step and

every line represents a simulated path, their respective payoff functions are formally

expressed below, and the variables are set according to the following definitions:

tj ≡ j represents month in which early exercise is possible, j = 1,2,…,12.

S(tj) = Sj ≡ underlying asset price observed at jth month
�S tj
� � ¼ �Sj ≡ discretely sampled average of underlying asset price

�Sj ¼ Aj ≡

Xj
k¼1

Sk

j ⇒ discretely sampled arithmetic average

�Sj ¼ Gj ≡
Yj
k¼1

Sk

 !1=j

⇒discretely sampled geometric average

K ≡ strike price

η ¼ 1 for call option;
−1 for put option:

�
y ≡ dividend yield

r ≡ riskless rate

σ ≡ volatility

payoff
Arithmetic
Floating
Strike

¼ max η S tj
� �

−Aj
� �

; 0
� �

payoff
Geometric
Floating
Strike

¼ max η S tj
� �

−Gj
� �

; 0
� �

payoff
Arithmetic
Fixed
Strike

¼ max η Aj−K
� �

; 0
� �

payoff
Geometric
Fixed
Strike

¼ max η Gj−K
� �

; 0
� �

According to Longstaff and Schwartz (2001), the structure used in regressions,

expressed below by equation (1), comprises a constant, the two first degrees of the

chosen polynomial basis and their crossed product up to the third degree, totaling eight

basis. The polynomials used are Power, Legendre, Laguerre and Hermite A.

The matrix of the underlying asset prices, S, is defined recursively. The ith row vector

corresponds to the ith simulated path and its elements are defined by:
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si;jþ1 ¼ si;j e
r−y−σ2

	
2

� �
Δtþσ ε

ffiffiffiffi
Δt

p
; ε e N 0; 1ð Þ and Δt = tj + 1 − tj , j = 1, 2,…, 12.

Note that each column vector of the matrix corresponds to a specific time step.

Once the matrix of the underlying asset prices is set, the matrix of averages, �S , is

determined by using relations introduced latter, in which the form depends solely on

what kind of average is considered, i.e., whether it is an arithmetic average or it is a

geometric one.

Let,

Φ1(S)≡Bm,j; Φ2(S)≡Cm,j; Φ1
�Sð Þ≡Dm;j; Φ2

�Sð Þ≡Em;j;

Φ1 Sð Þ⊙Φ1
�Sð Þ≡Zm;j; Φ2 Sð Þ⊙Φ1

�Sð Þ≡Gm;j; Φ1 Sð Þ⊙Φ2
�Sð Þ≡Hm;j

where, Φn(.) is the polynomial basis of nth degree and it is a function of one of the

state variables. The dimension of matrices is set by j time steps and m simulated paths.

So, at jth time step, the regression is performed by using the column vector related to

the same time step. Therefore,

F Sj ; �Sj
� � ¼ α1 þ α2: bj þ α3: cj þ α4: dj þ α5: ej þ α6: zj þ α7: gj þ α8: hj ð1Þ

In this work, the Monte Carlo simulation was performed with pseudorandom num-
ber sequences and the variance reduction technique used is antithetic variables4. We

used three sets of parameters varying them solely on strike prices used in experiments

as follows:

S t1ð Þ ¼ 100;K ¼ 95; σ ¼ 20%; r ¼ 5%; y ¼ 0; ðiÞ
S t1ð Þ ¼ K ¼ 100; σ ¼ 20%; r ¼ 5%; y ¼ 0; ðiiÞ

and
S t1ð Þ ¼ 100;K ¼ 105; σ ¼ 20%; r ¼ 5%; y ¼ 0: ðiiiÞ

Polynomial basis used

As mentioned above, the polynomials used in this study are Power, Legendre, Laguerre

and Hermite A. All of them can be alternatively expressed by Rodrigues’ formula, expli-

cit form or by the recurrence law (Abramowitz and Stegun 1972).

Following Abramowitz and Stegun (1972), Rodrigues’ formula is expressed by:

f n xð Þ ¼ 1
an:ρ xð Þ :

∂n

∂xn
ρ xð Þ: g xð Þð Þn½ �

Where n is the polynomial degree (n ≥ 0). The coefficients and functions of Rodrigues’

formula for each of the polynomials are detailed in Table 1.

Alternatively, it is possible to use the explicit form, whose terms are specified in

Table 2, to represent the polynomials:
Table 1 Coefficients and functions of the basis functions using Rodrigues’ formula

fn (x) an ρ(x) g (x)

Power Wn (x) 2:nð Þ!=n! x2.n 1

Legendre Pn (x) (−1)n .2n.n! 1 1 – x2

Laguerre Ln (x) n! e−x x

Hermite A Hn (x) (−1)n e−x
2

1



Table 2 Explicit expressions of the basis functions

fn (x) N dn cm gm (x)

Power Wn (x) 0 1 1 xn

Legendre Pn (x) [n/2] 2−n −1ð Þm: n
m

� �
: 2:n−2:m

n

� �
xn−2.m

Laguerre Ln (x) n 1 −1ð Þm
m! : n

n−m

� �
xm

Hermite A Hn (x) n
2= �½ n! −1ð Þm: 1

m! n−2:mð Þ! (2.x)n−2.m
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f n ¼ dn

XN
m¼0

cm:gm xð Þ

The recurrence law can also be used to express the polynomials and it is described
as:

anþ1:f nþ1 xð Þ ¼ an þ bn:xð Þ:f n xð Þ−an−1:f n−1 xð Þ

Table 3 specifies every term of the recurrence law.

The format used to write a polynomial is chosen in such a way that the pricing proced-

ure becomes operationally more practical. This method proved to be effective throughout

the whole process, excluding the possibility that the rank of the coefficient matrix of the

least square regression is insufficient. Thus, the explicit form of the Power and Laguerre

polynomials is applied, the recurrence law is used to express the Hermite A polynomial,

and Rodrigues’ formula is used to write the Legendre polynomial.

Results and discussion
Tables 4, 5, 6 and 7 show the average prices and their respective standard deviations of

call and put options for the four types of Amerasian options studied. Tables 4, 5, 6 and

7 show that when different basis are used in all sets of simulated trajectories, and tak-

ing into account all sets of parameters used, there is a slight difference among the esti-

mates of the option price. These results follow what Moreno and Navas (2003) stated

i.e., the choice of the polynomial basis affects the estimates of the option prices. This

difference becomes insignificant when a greater number of simulated trajectories is

used.

Such pattern is the same for both put options and for call options of all the American

Asian options considered. This result suggests two basic conclusions. First, it ratifies

one of the main features of the method: if all of the polynomial basis are orthogonal,

then theoretically all of them could be indistinctly used in derivative pricing. Second, it

shows that the gradual reduction of differences among the price estimates for each of

the basis due to the incremental increase in the number of simulated paths is a direct

result of the law of large numbers.
Table 3 Recurrence law for the basis functions reported

fn (x) an + 1 an bn an − 1 f0 (x) f1 (x)

Power Wn (x) 1 0 1 0 1 X

Legendre Pn (x) n+1 0 2.n+1 n 1 x

Laguerre Ln (x) n+1 2.n+1 −1 n 1 1−x

Hermite A Hn (x) 1 0 2 2.n 1 2.x



Table 4 Case 1: Estimated prices for different set of simulated paths
Case 1 - Arithmetic floating strike

PUT - Strike 105 100 500 1000 5000 10000 50000

Power 5,5292 (0,38652) 5,1195 (0,12007) 5,0274 (0,0677) 4,9441 (0,0346) 4,9519 (0,03081) 4,9541 (0,01721)

Legendre 5,5277 (0,37698) 5,0311 (0,11412) 5,0073 (0,10189) 4,9647 (0,05079) 4,9573 (0,03045) 4,9511 (0,01641)

Laguerre 5,4596 (0,26394) 5,1052 (0,24922) 5,0131 (0,07685) 4,9642 (0,0636) 4,9631 (0,02601) 4,9566 (0,01498)

Hermite A 5,2566 (0,30584) 5,0787 (0,14616) 5,0821 (0,10896) 4,9606 (0,04224) 4,9645 (0,04333) 4,9566 (0,01496)

PUT - Strike 100 100 500 1000 5000 10000 50000

Power 4,8737 (0,25913) 4,392 (0,14042) 4,4421 (0,08279) 4,3984 (0,03246) 4,3822 (0,03117) 4,3898 (0,01394)

Legendre 4,8186 (0,24198) 4,5005 (0,1226) 4,5409 (0,0741) 4,4328 (0,04683) 4,395 (0,025) 4,3905 (0,01458)

Laguerre 4,8157 (0,26914) 4,4182 (0,14124) 4,4109 (0,07254) 4,394 (0,03582) 4,3984 (0,01837) 4,3906 (0,01461)

Hermite A 4,8801 (0,26384) 4,5168 (0,12988) 4,4292 (0,0761) 4,3965 (0,04536) 4,3969 (0,02133) 4,3905 (0,01195)

PUT - Strike 95 100 500 1000 5000 10000 50000

Power 4,887 (0,44331) 4,5837 (0,10469) 4,5932 (0,10125) 4,4892 (0,05058) 4,4924 (0,02487) 4,4837 (0,01323)

Legendre 4,905 (0,30647) 4,6709 (0,10534) 4,5098 (0,08731) 4,5039 (0,04946) 4,4732 (0,02929) 4,4846 (0,01352)

Laguerre 5,0175 (0,30984) 4,565 (0,11335) 4,5149 (0,09689) 4,49 (0,02836) 4,4904 (0,02779) 4,4846 (0,01338)

Hermite A 5,011 (0,27431) 4,6248 (0,14327) 4,5676 (0,12363) 4,4965 (0,04904) 4,4732 (0,02929) 4,4846 (0,01352)

CALL - Strike 105 100 500 1000 5000 10000 50000

Power 3,1783 (0,24351) 3,2916 (0,11733) 3,3286 (0,07488) 3,2771 (0,03209) 3,2903 (0,01621) 3,2758 (0,01799)

Legendre 3,1421 (0,26638) 3,2268 (0,11876) 3,2538 (0,04496) 3,265 (0,03664) 3,2888 (0,01995) 3,2818 (0,01131)

Laguerre 3,2969 (0,2) 3,2741 (0,15825) 3,2853 (0,09247) 3,2713 (0,0395) 3,2859 (0,02331) 3,2764 (0,01669)

Hermite A 3,3147 (0,30627) 3,2757 (0,10231) 3,2679 (0,06761) 3,2849 (0,02703) 3,2796 (0,03082) 3,2764 (0,01668)

CALL - Strike 100 100 500 1000 5000 10000 50000

Power 3,0867 (0,38686) 2,984 (0,1241) 3,0561 (0,07181) 3,0186 (0,03374) 2,9977 (0,03123) 3,0122 (0,01231)

Legendre 3,0231 (0,35521) 3,0533 (0,12091) 3,0219 (0,08862) 3,0323 (0,03966) 3,0275 (0,02892) 3,0125 (0,01349)

Laguerre 3,1118 (0,38252) 2,9581 (0,13003) 3,0992 (0,07227) 3,0287 (0,03935) 3,0127 (0,02573) 3,0126 (0,01371)

Hermite A 2,9222 (0,3244) 3,0657 (0,12064) 3,0454 (0,08328) 3,0199 (0,05572) 3,0092 (0,03606) 3,0156 (0,015)

CALL - Strike 95 100 500 1000 5000 10000 50000

Power 3,085 (0,23395) 2,9682 (0,16596) 3,0049 (0,05549) 2,9916 (0,03029) 2,9789 (0,02461) 2,9641 (0,01496)

Legendre 2,8932 (0,2631) 3,0064 (0,12606) 2,987 (0,10273) 2,9663 (0,05163) 2,9482 (0,01573) 2,9644 (0,01507)

Laguerre 2,8498 (0,26982) 2,9404 (0,11433) 2,9354 (0,07099) 2,9595 (0,03359) 2,9694 (0,02955) 2,9644 (0,01508)

Hermite A 2,8649 (0,25414) 2,9375 (0,15739) 2,9957 (0,08331) 2,9702 (0,04905) 2,9482 (0,01573) 2,9644 (0,01507)

Standard deviations in parentheses. Simulated path (NumSim) throughout all sets of parameters i.e., K = 95, K = 100, K = 105
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Table 5 Case 2: Estimated prices for different set of simulated paths
Case 2 - Geometric floating strike

PUT - Strike 105 100 500 1000 5000 10000 50000

Power 5,4008 (0,40284) 5,0057 (0,11024) 4,9288 (0,07604) 4,8491 (0,04653) 4,852 (0,03007) 4,8519 (0,01425)

Legendre 5,3411 (0,33629) 4,9315 (0,12912) 4,8444 (0,09204) 4,8634 (0,05167) 4,8612 (0,05081) 4,8526 (0,0147)

Laguerre 5,5355 (0,20011) 4,8723 (0,15434) 4,8561 (0,0866) 4,8863 (0,04501) 4,8703 (0,0353) 4,8529 (0,01454)

Hermite A 5,3667 (0,41746) 4,9731 (0,13953) 4,9061 (0,08725) 4,8608 (0,04106) 4,858 (0,03583) 4,8524 (0,01237)

PUT - Strike 100 100 500 1000 5000 10000 50000

Power 4,8737 (0,2144) 4,392 (0,13649) 4,4421 (0,0691) 4,3984 (0,03888) 4,3822 (0,02424) 4,3898 (0,01473)

Legendre 4,8186 (0,27618) 4,5005 (0,08995) 4,5409 (0,10719) 4,4328 (0,03967) 4,395 (0,02285) 4,3905 (0,01474)

Laguerre 4,8157 (0,18517) 4,4182 (0,13916) 4,4109 (0,07725) 4,394 (0,04539) 4,3984 (0,02433) 4,3906 (0,01433)

Hermite A 4,8801 (0,20338) 4,5168 (0,16687) 4,4292 (0,07855) 4,3965 (0,03733) 4,3969 (0,02125) 4,3905 (0,01342)

PUT - Strike 95 100 500 1000 5000 10000 50000

Power 4,8737 (0,2946) 4,392 (0,15808) 4,4421 (0,07126) 4,3984 (0,04749) 4,3822 (0,02766) 4,3898 (0,0129)

Legendre 4,8186 (0,21728) 4,5005 (0,13473) 4,5409 (0,08409) 4,4328 (0,03236) 4,395 (0,03323) 4,3905 (0,01331)

Laguerre 4,8157 (0,20457) 4,4182 (0,11763) 4,4109 (0,06621) 4,394 (0,03963) 4,3984 (0,02963) 4,3906 (0,01332)

Hermite A 4,8801 (0,54061) 4,5168 (0,19166) 4,4292 (0,11576) 4,3965 (0,05203) 4,3969 (0,04185) 4,3905 (0,01331)

CALL - Strike 105 100 500 1000 5000 10000 50000

Power 3,2097 (0,22214) 3,3416 (0,12657) 3,3249 (0,09254) 3,336 (0,03828) 3,324 (0,03941) 3,3293 (0,01685)

Legendre 3,214 (0,28978) 3,3615 (0,14556) 3,3733 (0,09039) 3,321 (0,04469) 3,3486 (0,0313) 3,3296 (0,01689)

Laguerre 3,252 (0,28853) 3,3193 (0,13172) 3,354 (0,10208) 3,3189 (0,02632) 3,3495 (0,02309) 3,3297 (0,01692)

Hermite A 3,3304 (0,21868) 3,4262 (0,14675) 3,2753 (0,07181) 3,3237 (0,05071) 3,3376 (0,02572) 3,3297 (0,01661)

CALL - Strike 100 100 500 1000 5000 10000 50000

Power 3,0867 (0,35108) 2,984 (0,13725) 3,0561 (0,09443) 3,0186 (0,03458) 2,9977 (0,02952) 3,0122 (0,01336)

Legendre 3,0231 (0,27413) 3,0533 (0,09543) 3,0219 (0,08744) 3,0323 (0,04844) 3,0275 (0,03365) 3,0125 (0,01356)

Laguerre 3,1118 (0,31237) 2,9581 (0,15785) 3,0992 (0,08248) 3,0287 (0,04877) 3,0127 (0,03003) 3,0126 (0,01666)

Hermite A 2,9222 (0,35909) 3,0657 (0,1357) 3,0454 (0,05049) 3,0199 (0,03075) 3,0092 (0,02814) 3,0156 (0,01356)

CALL - Strike 95 100 500 1000 5000 10000 50000

Power 3,0867 (0,2807) 2,984 (0,07714) 3,0561 (0,069) 3,0186 (0,05047) 2,9977 (0,01636) 3,0122 (0,01525)

Legendre 3,0231 (0,24697) 3,0533 (0,14612) 3,0219 (0,09397) 3,0323 (0,02256) 3,0275 (0,02232) 3,0125 (0,01527)

Laguerre 3,1118 (0,22394) 2,9581 (0,09095) 3,0992 (0,09578) 3,0287 (0,02069) 3,0127 (0,02792) 3,0126 (0,01531)

Hermite A 2,9222 (0,2811) 3,0657 (0,08468) 3,0454 (0,09731) 3,0199 (0,0453) 3,0092 (0,01941) 3,0156 (0,01422)

Standard deviations in parentheses. Simulated path (NumSim) throughout all sets of parameters i.e., K = 95, K = 100, K = 105
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Table 6 Case 3: Estimated prices for different set of simulated paths
Case 3 - Arithmetic fixed strike

PUT - Strike 105 100 500 1000 5000 10000 50000

Power 6,7237 (0,33767) 6,7068 (0,10996) 6,6948 (0,07619) 6,6841 (0,05154) 6,6669 (0,05266) 6,6692 (0,02473)

Legendre 6,6299 (0,25683) 6,7175 (0,11842) 6,636 (0,0711) 6,6629 (0,04606) 6,6631 (0,0545) 6,6622 (0,02162)

Laguerre 6,7273 (0,34734) 6,6902 (0,10582) 6,7413 (0,09639) 6,6739 (0,0597) 6,666 (0,05421) 6,6622 (0,02166)

Hermite A 6,7695 (0,37345) 6,7103 (0,09924) 6,7262 (0,17196) 6,6625 (0,04541) 6,6481 (0,02537) 6,6622 (0,02167)

PUT - Strike 100 100 500 1000 5000 10000 50000

Power 4,8737 (0,20587) 4,392 (0,08289) 4,4421 (0,05145) 4,3984 (0,02722) 4,3822 (0,01973) 4,3898 (0,0101)

Legendre 4,8186 (0,22622) 4,5005 (0,08516) 4,5409 (0,06124) 4,4328 (0,02677) 4,395 (0,02303) 4,3905 (0,01009)

Laguerre 4,8157 (0,18574) 4,4182 (0,07473) 4,4109 (0,04725) 4,394 (0,03594) 4,3984 (0,01532) 4,3906 (0,01004)

Hermite A 4,8801 (0,19166) 4,5168 (0,08783) 4,4292 (0,0467) 4,3965 (0,02859) 4,3969 (0,01286) 4,3905 (0,01001)

PUT - Strike 95 100 500 1000 5000 10000 50000

Power 1,5292 (0,23719) 1,6134 (0,15668) 1,6079 (0,10196) 1,5839 (0,02465) 1,5744 (0,01738) 1,5612 (0,01605)

Legendre 1,6529 (0,24375) 1,5715 (0,09924) 1,5483 (0,06678) 1,5543 (0,03563) 1,5712 (0,02131) 1,5609 (0,0159)

Laguerre 1,66 (0,30421) 1,5603 (0,09967) 1,6074 (0,11454) 1,5781 (0,02878) 1,5747 (0,01671) 1,5609 (0,0159)

Hermite A 1,6873 (0,35452) 1,5603 (0,09967) 1,6074 (0,11454) 1,5781 (0,02882) 1,5747 (0,01667) 1,5609 (0,0159)

CALL - Strike 105 100 500 1000 5000 10000 50000

Power 0,6458 (0,07247) 0,6472 (0,0309) 0,655 (0,02674) 0,6554 (0,02315) 0,6488 (0,01533) 0,6547 (0,00766)

Legendre 0,6166 (0,14273) 0,6607 (0,03518) 0,662 (0,03774) 0,6557 (0,01901) 0,6524 (0,01889) 0,6539 (0,00705)

Laguerre 0,5946 (0,08017) 0,6477 (0,04393) 0,6554 (0,0448) 0,6585 (0,02542) 0,649 (0,01538) 0,6539 (0,00705)

Hermite A 0,6286 (0,10374) 0,6688 (0,04487) 0,6663 (0,02847) 0,6532 (0,01512) 0,6508 (0,01129) 0,6539 (0,00705)

CALL - Strike 100 100 500 1000 5000 10000 50000

Power 3,0867 (0,37492) 2,984 (0,10728) 3,0561 (0,0726) 3,0186 (0,06132) 2,9977 (0,04801) 3,0122 (0,01715)

Legendre 3,0231 (0,35095) 3,0533 (0,13885) 3,0219 (0,08161) 3,0323 (0,05333) 3,0275 (0,04622) 3,0125 (0,01748)

Laguerre 3,1118 (0,31191) 2,9581 (0,1255) 3,0992 (0,09784) 3,0287 (0,066) 3,0127 (0,03268) 3,0126 (0,01796)

Hermite A 2,9222 (0,35167) 3,0657 (0,16015) 3,0454 (0,0979) 3,0199 (0,05945) 3,0092 (0,03579) 3,0156 (0,01795)

CALL - Strike 95 100 500 1000 5000 10000 50000

Power 5,5638 (0,06386) 5,5919 (0,04907) 5,5676 (0,03613) 5,5884 (0,01042) 5,5865 (0,00963) 5,5795 (0,00573)

Legendre 5,5388 (0,06966) 5,5773 (0,02321) 5,5956 (0,03641) 5,5818 (0,0193) 5,5825 (0,01016) 5,5795 (0,00576)

Laguerre 5,617 (0,11439) 5,5729 (0,04111) 5,5777 (0,03414) 5,5875 (0,01177) 5,5865 (0,00956) 5,5795 (0,00576)

Hermite A 5,6234 (0,10946) 5,5729 (0,04111) 5,5777 (0,03414) 5,5875 (0,01177) 5,5865 (0,00956) 5,5795 (0,00576)

Standard deviations in parentheses. Simulated path (NumSim) throughout all sets of parameters i.e., K = 95, K = 100, K = 105
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Table 7 Case 4: Estimated prices for different set of simulated paths
Case 4 - Geometric fixed strike

PUT - Strike 105 100 500 1000 5000 10000 50000

Power 6,8045 (0,23302) 6,8008 (0,13203) 6,7869 (0,07603) 6,7925 (0,05448) 6,7882 (0,03496) 6,801 (0,02277)

Legendre 6,7919 (0,32414) 6,8177 (0,15514) 6,8438 (0,05622) 6,8042 (0,06049) 6,7796 (0,04728) 6,7942 (0,02165)

Laguerre 6,9194 (0,20012) 6,838 (0,14021) 6,8201 (0,07885) 6,8014 (0,05276) 6,8106 (0,03512) 6,7942 (0,02156)

Hermite A 6,8552 (0,26187) 6,8255 (0,09763) 6,8773 (0,11303) 6,809 (0,04093) 6,7957 (0,03321) 6,7967 (0,02055)

PUT - Strike 100 100 500 1000 5000 10000 50000

Power 4,8737 (0,19727) 4,392 (0,10796) 4,4421 (0,04911) 4,3984 (0,03353) 4,3822 (0,01958) 4,3898 (0,00954)

Legendre 4,8186 (0,15306) 4,5005 (0,05025) 4,5409 (0,04643) 4,4328 (0,02551) 4,395 (0,01771) 4,3905 (0,0067)

Laguerre 4,8157 (0,21805) 4,4182 (0,07679) 4,4109 (0,04758) 4,394 (0,0257) 4,3984 (0,02187) 4,3906 (0,00958)

Hermite A 4,8801 (0,22004) 4,5168 (0,07318) 4,4292 (0,04935) 4,3965 (0,02862) 4,3969 (0,0216) 4,3905 (0,00917)

PUT - Strike 95 100 500 1000 5000 10000 50000

Power 1,7424 (0,32208) 1,6518 (0,10318) 1,6974 (0,12042) 1,6701 (0,03038) 1,6648 (0,01796) 1,6514 (0,01658)

Legendre 1,6857 (0,42331) 1,7019 (0,17981) 1,6196 (0,08402) 1,6541 (0,03042) 1,6618 (0,02214) 1,6512 (0,01646)

Laguerre 1,7466 (0,32841) 1,6519 (0,10429) 1,697 (0,11716) 1,6682 (0,02973) 1,6652 (0,01772) 1,6512 (0,01645)

Hermite A 1,7466 (0,32841) 1,6519 (0,10429) 1,697 (0,11716) 1,6682 (0,02974) 1,6651 (0,01771) 1,6512 (0,01646)

CALL - Strike 105 100 500 1000 5000 10000 50000

Power 0,5694 (0,11528) 0,6052 (0,02571) 0,6195 (0,0231) 0,6091 (0,02097) 0,609 (0,00636) 0,6107 (0,00642)

Legendre 0,5937 (0,12399) 0,6198 (0,05949) 0,6181 (0,04114) 0,6153 (0,01535) 0,6111 (0,01035) 0,6096 (0,00624)

Laguerre 0,5683 (0,08619) 0,6195 (0,03649) 0,5991 (0,02705) 0,6056 (0,01875) 0,6075 (0,01303) 0,6096 (0,00624)

Hermite A 0,639 (0,08424) 0,6061 (0,05311) 0,6229 (0,03654) 0,6164 (0,01723) 0,6094 (0,01446) 0,6097 (0,00549)

CALL - Strike 100 100 500 1000 5000 10000 50000

Power 3,0867 (0,28263) 2,984 (0,18382) 3,0561 (0,11169) 3,0186 (0,04615) 2,9977 (0,03817) 3,0122 (0,01919)

Legendre 3,0231 (0,26407) 3,0533 (0,10516) 3,0219 (0,10515) 3,0323 (0,06786) 3,0275 (0,03656) 3,0125 (0,01501)

Laguerre 3,1118 (0,39224) 2,9581 (0,14587) 3,0992 (0,09989) 3,0287 (0,05675) 3,0127 (0,03434) 3,0126 (0,02285)

Hermite A 2,9222 (0,32296) 3,0657 (0,12974) 3,0454 (0,08487) 3,0199 (0,05707) 3,0092 (0,04068) 3,0156 (0,01976)

CALL - Strike 95 100 500 1000 5000 10000 50000

Power 5,5603 (0,10979) 5,5171 (0,04009) 5,5203 (0,03478) 5,5298 (0,01079) 5,5283 (0,00947) 5,5215 (0,00545)

Legendre 5,4441 (0,08543) 5,5499 (0,06434) 5,5135 (0,02599) 5,5259 (0,01888) 5,5246 (0,01067) 5,5214 (0,00543)

Laguerre 5,5604 (0,10972) 5,5173 (0,04024) 5,5202 (0,03487) 5,5299 (0,01076) 5,5282 (0,00947) 5,5214 (0,00543)

Hermite A 5,5604 (0,10972) 5,5173 (0,04024) 5,5202 (0,03487) 5,5299 (0,01076) 5,5282 (0,00947) 5,5214 (0,00543)

Standard deviations in parentheses. Simulated path (NumSim) throughout all sets of parameters i.e., K = 95, K = 100, K = 105

de
Lim

a
and

Sam
anez

FinancialInnovation
 (2016) 2:1 

Page
10

of
14



Fig. 2 Standard deviation computed over different set of simulated paths to Amerasian Put Options’ cases
to the following set of parameters: S(t1) = K = 100; σ = 20 %; r = 5 %; y = 0

Fig. 1 Standard deviation computed over different set of simulated paths to Amerasian Call Options’ cases
to the following set of parameters: S(t1) = K = 100; σ = 20 %; r = 5 %; y = 0
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Table 8 The polynomial basis whose standard deviation is the lowest at 50.000 simulated paths

PUT

Strike Case 1 Case 2 Case 3 Case 4

95 Power Power Legendre Laguerre

100 Hermite A Hermite A Hermite A Legendre

105 Hermite A Hermite A Legendre Hermite A

CALL

Strike Case 1 Case 2 Case 3 Case 4

95 Power Hermite A Power Legendre

100 Power Power Power Legendre

105 Legendre Hermite A Legendre Hermite A
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The increase in the number of simulated trajectories markedly decreases the standard

deviation of the price estimates for all of the basis used. Therefore, the estimates con-

verge to their real price. This is true for both call and put American Asian options. To

exemplify it graphically, Figs. 1 and 2 show the convergence of the estimated prices for

the set of parameters in which K = 100 to all simulated trajectories in each studied

cases considering the four polynomial basis.

The results in Table 8 suggest a certain degree of homogeneity regarding the most ac-

curate basis considering not only the cases studied in a specific strike, but also when

analyzing one case varying solely its strike price, whose basis presented in experiments

made the lowest standard deviation at 50.000 simulated paths. This happens for most

of cases and throughout strikes when the very same case is considered.

When analyzing one of the cases in study throughout strike prices, we observe that a spe-

cific basis delivers the lowest standard deviation in most of experiments. For example, in

case 1, if it is a put option, then Hermite A delivers a price whose standard deviation is the

lowest in two of the three set of parameters used. Whereas, for example, in case 3 for a call

option across all strike prices considered, the polynomial basis that delivers a price with the

lowest standard deviation is power. By repeating this process of column analysis of Table 8,

in most of strikes considered, when pricing an American Asian put option, Hermite A pro-

vides a better performance to the algorithm. On the other hand, when pricing an American

Asian call option, Power provides a better performance through different strikes.

Considering a specific strike price throughout cases in Table 8, we figure out that the

same feature happens, i.e., there is, in most cases, one polynomial basis whose price

delivered has the lowest standard deviation. For example, for a put option whose strike

price is 100 in three out of the four cases studied, Hermite A delivers the lowest stand-

ard deviation for the price estimates. Whereas, for a call option with the same strike

price, the polynomial basis power provides a better performance, i.e., the lowest stand-

ard deviation in most cases. By proceeding this process of row analysis in Table 8, we

got in most cases when pricing an American Asian put option that Hermite A had the

best performance. Whereas when pricing an American Asian call option, Power

delivers a better performance in most of cases.

These results suggest that pricing American Asian options using the Least-Squares

Monte Carlo Method enables the selection of one polynomial basis, regardless of the

kind of Amerasian. In fact, the main concern is whether we are pricing put or call

option.
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Conclusions
Our experiments using the four chosen polynomial basis ratified one of the method’s

elements, i.e., that any orthogonal polynomial basis can be used for pricing American

Asian options, since in all of the simulated paths the estimated prices of the options

are virtually the same.

For all of the Amerasian options priced, and for each of the basis used, the conver-

gence of the price estimate results from the decrease of the standard deviation while

the number of simulated paths increases.

Considering 50,000 simulated trajectories, our study suggests that it is possible to

empirically choose one specific polynomial basis for pricing an American Asian option.

The results show that one polynomial basis is marginally more accurate than others, by

providing a lower standard deviation it delivers a better performance to the algorithm

when pricing a complex option as American Asian options. Such empirical outcome is

theoretically unpredictable, since in principle all basis can be indistinctly used when

pricing the derivative.

Therefore, for practical purposes, if a trader is looking for a faster and more accurate

way to valuing an American Asian call option, the polynomial basis suggested to per-

form this procedure is Hermite A. On the other hand, if their concern is valuing an

Amerasian put option, the Power polynomial basis is recommended. This speediness

means being capable of measuring the worthiness of any derivative in order to screen

accurately business opportunities not only for hedge purposes but also for arbitrage

purposes.

Endnotes
1Where Ω is the set of all possible paths; ℑ is the filter of events at a certain time;

and Q is the risk-neutral probability measure of the elements of ℑ
2Hilbert space is a vector space with internal product and complete regarding the rule

set for this internal product
3The Fixed-Start Time Window Asian options are options whose number of elements’

average increases in time, having its beginning at some point of the timeline
4The routines were programmed and performed in MATLAB 6.5.
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