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Abstract 

The convergence of blockchain and immersive technologies has resulted in the popu-
larity of Metaverse platforms and their cryptocurrencies, known as Metaverse tokens. 
There has been little research into tokenomics in these emerging tokens. Building 
upon the information dissemination theory, this research examines the role of trad-
ing volume in the returns of these tokens. An empirical study was conducted using 
the trading volumes and returns of 197 Metaverse tokens over 12 months to derive 
the latent grouping structure with spectral clustering and to determine the relation-
ships between daily returns of different token clusters through augmented vector 
autoregression. The results show that trading volume is a strong predictor of lead–lag 
patterns, which supports the speed of adjustment hypothesis. This is the first large-
scale study that documented the lead–lag effect among Metaverse tokens. Unlike 
previous studies that focus on market capitalization, our findings suggest that trade 
volume contains vital information concerning cross-correlation patterns.
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Introduction
Since Bitcoin’s debut in 2008, many new types of cryptocurrency have emerged. From 
stable coins to non-fungible tokens (NFTs) to dog memes, a wide variety of cryptocur-
rencies are available today(Kou 2019). CoinMarketCap reports that there are approxi-
mately 22,360 cryptocurrencies, with a total market capitalization of $1.04 trillion.1 
Within the spectrum of various cryptocurrencies, a distinct category of tokens, denoted 
as Metaverse tokens, has garnered considerable interest from both scholarly investiga-
tors and investment practitioners.

The Metaverse is a term used to describe a virtual world or universe where people 
can interact and engage with each other in a variety of ways (Cheng et al. 2022; Kraus 
et al. 2022). It is often associated with virtual reality, augmented reality, and other forms 
of digital world-building. Metaverse tokens are digital assets that can be used within 
these virtual worlds to buy and sell virtual goods, access premium content or services, 
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or represent ownership of virtual real estate(Vidal-Tomás 2022). Metaverse tokens are 
special because they have the potential to enable a new type of digital economy within 
virtual worlds and allow for the creation of new business models and revenue streams 
within the metaverse. As the Metaverse domain gains momentum, a surge in investment 
and substantial capital influx into these cryptographic tokens is anticipated. Conse-
quently, comprehending the valuation mechanisms of these tokens becomes imperative 
to protect the interests of the broader community, encompassing users, investors, and 
developers within the Metaverse realm (Vidal-Tomás 2023).

The Metaverse token market is still relatively new and emerging, but it has seen sig-
nificant growth in recent years. Some of these tokens have seen impressive price gains, 
due to the increasing interest in virtual worlds and the potential for these tokens to be 
used in various ways within the Metaverse (Vidal-Tomás 2022). Currently, there are 
more than 200 different Metaverse tokens that are actively traded in the crypto market 
daily and they vary in size as measured by the total market capitalization. Figure 1 below 
shows the top 10 crypto tokens used for Metaverse platforms in terms of market capital-
isation. Some of the leading coins have a total market value as high as 1.6 billion dollars, 
which is comparable to that of a small-medium-sized publicly listed company in the real 
world (coinmarketcap 2022).

Similar to stock prices, the Metaverse token prices are volatile and are affected by 
many economic and financial factors (Cong et al. 2021 2022). The studies on the price 
movements of these crypto tokens are some of the most tracked themes in the research 
on Metaverse (Hu et  al. 2019a b; Urquhart 2016; Zargar and Kumar 2019). However, 
in the past, most crypto market research has focused on the industry’s heavyweight 
tokens, such as Bitcoin and Ethereum (Le Tran and Leirvik 2020). There has been very 
little research into tokenomics in the Metaverse field and almost no studies covering the 
smaller-sized tokens.

Building upon the information dissemination theory, this research examines the 
role played by trading volume in predicting future returns of Metaverse crypto tokens. 
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Fig. 1 Top 10 Metaverse tokens by market capitalization Source: coinmarketcap (2022)
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We conducted an empirical study to determine whether the daily returns of leading 
Metaverse tokens are cross-correlated with the values of follower tokens at later times, 
using 197 Metaverse token prices and trading volume over 12  months. The empirical 
results show that such lead–lag effect2 does exist among Metaverse crypto tokens, and 
that trading volume is a strong predictor of the observed lead–lag patterns. These pat-
terns emerge because low-volume tokens’ returns respond to market information more 
slowly, which provides support to the speed of adjustment hypothesis.

This research contributes to the study of token economy in several aspects: Firstly, 
unlike previous research that zooms into only a handful of major heavyweight crypto-
currencies (Le Tran and Leirvik 2020; Sifat et al. 2019), this is the first full-scale study 
to document the lead–lag effect that applies to most tokens within the Metaverse token 
category. Secondly, in contrast to previous studies that focus on market capitalisation, 
our findings suggest that trade volume contains vital information concerning cross-cor-
relation patterns. Returns on Metaverse tokens with high trading volume lead returns on 
stocks with low trading volume, owing to the fact that high-volume Metaverse tokens 
respond to marketwide information faster. This is of paramount importance to both 
Metaverse users and token investors. Thirdly, in terms of methodology, the research 
marks the first attempt to use spectral clustering to model the latent grouping structure 
of cryptocurrencies. Our research shows that such a framework deployed for time series 
clustering via spectral decomposition of the affinity matrix is appropriate and effective in 
determining cluster membership. Lastly, our research also offers practical implications 
in terms of trading strategies for Metaverse investors and sectoral supervisory approach 
for regulatory authorities as our findings suggest that trade volume contains vital infor-
mation concerning cross-correlation patterns. The predictability of Metaverse token 
returns provides insight into risk propagation and investment market segmentation.

Literature review
Tokenomics, a portmanteau of “token” and “economics”, is used to describe all aspects 
of a token’s economic model, including a token’s use and value, including its creation 
and distribution, supply and demand, incentivizing mechanisms, etc. (Cong et al. 2021). 
The main difference from the traditional economy is that tokenomics are designed spe-
cifically for decentralised crypto networks or ecosystems, such as major Metaverse plat-
forms represented by the Decentraland with the token MANA and the Sandbox with the 
token SAND (Guan et al. 2022).

Naturally, practitioners and economists are intrigued with the tokenomics design, and 
literature discussing the framework and structure of tokenomics has been burgeoning. 
For example, Freni et  al. (2022) discussed the paradigmatic shifts from economics to 
tokenomics and Carvalho (2022) compares the effects of tokens’ economics to the foun-
dational concepts in finance such as shares, profits, or dividends. Lo and Medda (2020), 
via an empirical study on venture-related blockchain tokens, find evidence that the func-
tions of a token create an economic link between the blockchain project and the token 
price—different functional types of blockchain tokens are associated with statistically 

2 Lead-lag effect is commonly used in finance to describe the phenomenon where one security leads the price move-
ment of another, with some time delay.
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significant differences in token prices. Lo and Medda (2020) argue that this finding pro-
vides justification for recent regulators’ action of differentiating security tokens and util-
ity tokens and regulate differently.

Lo and Medda (2020) are not the only or the first researcher who touched on what 
impact or even determine cryptocurrency prices. Valuation and market efficiency are 
evergreen topics among economics and finance researchers, and with the exponential 
growth of cryptocurrency market capitalization and trading volumes in the past years, 
empirical studies examining cryptocurrency prices already emerged. Earlier studies 
mostly concluded that the cryptocurrency markets were far from efficient. Urquhart 
(2016) was arguably the first to test the weak form of Bitcoin data and he concluded that 
Bitcoin returns are market inefficient. Zargar and Kumar (2019) used high-frequency 
data to test the martingale hypothesis in Bitcoin returns and found evidence of the pres-
ence of informational inefficiency in the Bitcoin market at higher frequency levels. Hu 
et al. (2019a b) ran various panel tests on cryptocurrencies but found no empirical sup-
port for the Efficient Market Hypothesis either. This is understandable given that cryp-
tocurrencies, mostly Bitcoin and Ethereum, were still relatively small in terms of market 
capitalization and that the numbers of users and traders were rather limited.

A turning point probably took place when Le Tran and Leirvik (2020) examined the 
level of market efficiency in the five largest cryptocurrencies and reported that the effi-
ciency is highly time-varying. They found evidence that these cryptocurrency markets 
had become more efficient in the period of 2017–2019. As time went by and more mar-
ket data became available, tokenomics models also started to emerge.

Among the sparse equilibrium models on tokenomics, probably the most notewor-
thy is the one built by Cong et al. (2021 2022). Their model captures two key features 
shared by tokenomics: firstly, tokens are the means of payment on platforms and they 
support economic transactions on the platforms. Secondly, the user adoption of a plat-
form exhibits a network effect: the more users participate on a platform, the easier it is 
for any user to find a transaction counterparty, and this will make the token more useful 
and raise the expected future token price.

Their model is constructed in such a way that the transaction benefits of tokens will 
increase if people expect the platform’s future productivity to rise, which will attract 
more users. The larger user base will subsequently increase transaction benefits due to 
the user network externality and drive up the token prices and even greater adoption in 
the future.

Cong et al. (2021)’s model carries a few important implications that could be tested 
empirically: First of all, users can conduct peer-to-peer transactions on digital platforms 
such as the Metaverse, and the equilibrium price of tokens is determined by aggregat-
ing heterogeneous users’ transactional demand. This suggests that trading volume could 
matter, as it is an intuitive proxy for transactional demand.

In addition, their model focuses on the endogenous formation of the platform, where 
the two key endogenous variables are the token price and platform user base. As previ-
ously discussed, the user base captures the positive network externality of user adop-
tion and impacts token prices positively. This intertemporal feedback between token 
price and user adoption implies that the price discovery might not be done instantane-
ously in Metaverse. As information diffusion might take time by design, it also poses 
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an interesting question on if there will delay in information diffusion across different 
Metaverse tokens.

Cong et al. (2021) also pointed out that the existence of asymmetric information may 
cause financial friction. For example, on certain less decentralized platforms, only plat-
form managers can see the fee flows, and the fee-based payouts to investors are subject 
to moral hazard risk. The model, therefore, features a tractable, static form of incom-
plete information. This could be another reason for delayed information transmission. 
An empirical investigation into how information is transmitted within crypto markets is 
called for in order to understand the pricing and market efficiency of Metaverses.

With a unique database that covers almost the complete set of Metaverse tokens, we 
are able to conduct such an empirical test and shed light on the information diffusion 
process in Metaverses. Specifically, due to the endogeneity of tokenomics and fric-
tion caused by asymmetric information in metaverses, information diffusion will not 
be instantaneous and we expect to observe lead–lag effect, a.k.a., the returns of some 
tokens are cross-correlated with those of other tokens at later times.

We are also able to examine the potential role of user adoption in tokenomics pricing 
discovery, as modeled by Cong et al. (2021). Intuitively we use trading volume as a proxy 
for user adoption—if the network effect of user adoption is valid, we expect to see tokens 
with higher trading volume lead the others.

Our hypothesis is therefore formulated as:

Hypothesis 1 The returns of Metaverse tokens with higher trading volume are cross-
correlated with those of Metaverse tokens with lower trading volume at later times.

The hypothesis will be validated if we observe lead–lag effect among the Metaverse 
tokens and if the trading volume has predicting power over such an effect.

It is worth noting that our hypothesis is also consistent with the differential speed of 
adjustment argument in conventional financial studies, where researchers usually regard 
lead–lag effect as evidence that information diffusion takes time in a less-than-perfectly-
efficient market. For instance, Lo and MacKinlay (1990) find that the returns of large 
stocks lead those of smaller stocks, and Chordia and Swaminathan (2000) observe the 
lead–lag effect of short-term returns between high-volume portfolios and low-volume 
portfolios. Chordia and Swaminathan (2000) argue that this is because returns on low-
volume portfolios respond more slowly to information in market returns. Similarly, Hou 
(2007) finds that the lead–lag effect between big firms and small firms is more evident 
within industries, and he believes that the slow diffusion of industry information is a 
leading cause of the lead–lag effect.

It will be really interesting therefore to see if the lead–lag effect exists in crypto tokens, 
and our study is among the first to formally examine the lead–lag effect in crypto-tokens 
on a large scale. Some existing literature looks into the cross-correlation of cryptocur-
rencies but most of them focus on the major ones such as Bitcoin and Ethereum. For 
example, Sifat et  al. (2019) investigate the lead–lag relationship between Bitcoin and 
Ethereum and found evidence of bi-directional causality between the two assets. Hu 
et al. (2019a b) report evidence that the market returns of all other coins are strongly 
correlated with Bitcoin returns. Vidal-Tomás (2022) on the other hand, seems to find 



Page 6 of 19Guan et al. Financial Innovation           (2024) 10:88 

evidence that Metaverse and play-to-earn tokens are only weakly correlated to a crypto 
market benchmark index, predominantly consisting of Bitcoin and Ethereum. None of 
the studies consider the cross-sectional correlations among tokens other than Bitcoin 
and Ethereum, let alone the timing differences. We expect to provide empirical results 
on the potential lead–lag relationships of Metaverse crypto tokens and close the gap 
between conventional financial markets and crypto markets. In addition, as Metaverses 
are still a nascent yet fast-growing industry and attract a lot of attention from research-
ers, investors and regulatory bodies, empirical evidence on lead–lag effect (or the lack of 
it) will provide us with important implications and guidance for future practices.

Methods
We collected the daily price series of 197 Metaverse tokens from the Investing.com data-
base using investpy—an extensible and open Python package for data extraction (del 
Canto 2021). Investing.com represents one of the highly-referenced price-tracking plat-
forms among the scholarly community (Alves et al. 2020; Hernández-Nieves et al. 2021), 
which covers crypto assets (El-Berawi et  al. 2021) and other asset classes (Liu et  al. 
2017). With Metaverse being the “Year in a Word 2021” by the Financial Times (Waters 
2021), the sampled time period (all trading days between March 21, 2021, and March 20, 
2022) was chosen because it captures the entire duration of the Metaverse hype before 
the crypto crash in 2022 (see Fig. 2 for the Google search trends of "metaverse"), which 
allows a reasonably sufficient amount of time lag for information diffusion and market 
responses. Three data time series were obtained for each token entry: the daily opening 
prices, the daily closing prices, and trading volumes, and the daily returns are derived 
from the daily opening prices and the daily closing prices.

We conducted an empirical study to determine whether the daily returns of the lead-
ing tokens are cross-correlated with the values of follower tokens at later times, using 
Metaverse token prices from Investing.com. Our study is carried out in two phases 
to investigate the hypothesized effects. Phase 1 used spectral clustering to catego-
rise Metaverse tokens against the similarity in trading volume patterns, extending the 
approaches by Shi and Malik (2000). Spectral clustering, which is based on algebraic 
graph theory, has piqued the interest of academia in recent years due to its strong the-
oretical foundations as well as the capability of processing the time series with high 
dimensions and dealing with arbitrarily shaped datasets (Cai et  al. 2011; Damle et  al. 
2019; Shang et al. 2016; Von Luxburg 2007). This approach may be used to locate nor-
malized graph cuts if the affinity matrix is the graph’s adjacency matrix (Shi and Malik 
2000). Its results frequently surpass traditional algorithms such as k-means or methods 
using a single linkage, especially when the structure of the individual clusters is signifi-
cantly non-convex, such as when clusters are nested circles on the plane (Von Luxburg 
2007).

Spectral clustering is deployed to find a balanced grouping with adequate homogenei-
ties regarding the degree of correlation(Von Luxburg 2007). Spectral clustering is useful 
when the data points are not easily separated by a straight line or hyperplane or when the 
clusters have non-convex shapes. It is particularly useful for time series data, which may 
have complex patterns that are not easily captured by linear methods such as k-means 
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and hierarchical clustering which do not perform well in high-dimensional spaces (Ng 
et al. 2001). Our dataset is a ‘ 197× 365 ’ matrix, each row of the matrix represents a time 
series of token volume, with 365 observations (days) in each series. By examining the 
probability density function of the data via kernel density estimation (KDE) test, the data 
contains regions of high density that are not easily separated by a linear boundary (Scott 
2015). As a result, it prompts us to consider spectral clustering as the top option. How-
ever, we compared the performance of spectral clustering with k-means with Dynamic 
time warping (DTW) distance and hierarchical clustering (Keogh and Lin 2005; Salva-
dor and Chan 2007). We found that k-means and hierarchical clustering are not able to 
separate the tokens into meaningful clusters, given they assigned 195 tokens into one 
cluster and identified one cluster for each of the remaining tokens. In addition, spectral 
clustering is not sensitive to the initial conditions as k-means, it is also less sensitive to 
the presence of noise or outliers in the data, and it can be used with a wide range of 
similarity measures, such as the Gaussian kernel or the cosine similarity(Von Luxburg 
2007). Another advantage of spectral clustering is that it can handle data with arbitrary 
shape and size, which is useful for time series data where the number of data points may 
vary from one series to another (Von Luxburg 2007; Wang & Zhang 2005). This aligns 
with our dataset in the study, where trading periods for the 197 tokens differ. The mini-
mum number of trading days is 0, while the maximum is 365 days, with a mean value 
of 168.13 days and a standard deviation of 122.22 days. Some tokens are actively traded 
almost every day (e.g., Decentraland, Aavegotchi, The Sandbox Coin), while others expe-
rience a decrease in trading volume and eventually vanish over time (e.g., DeNations, 
Bullieverse). Additionally, some tokens have sparse trading days (e.g., Somnium Space 
Cubes), and others started trading later but persisted for an extended duration (e.g., 
Torum).

Using the Gaussian kernel, a distance matrix with zero indicating identical ele-
ments and high values indicating significantly different components can be turned 
into an affinity or similarity matrix suitable for the procedure with a k-nearest neigh-
bours connection matrix (Yu and Shi 2003). The inputs for the normalized spectral 
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clustering described by Shi and Malik (2000) are the similarity matrix S ∈ R
n×n and 

the number k ( k = 3 ) of clusters. It begins by constructing a similarity graph using k
-nearest neighbour graphs. W  represents the weighted adjacency matrix. The unnor-
malized Laplacian L is then computed, followed by the initial generalized eigenvectors 
u1, . . . ,uk of the generalized eigenproblem Lu = �Du . U ∈ R

n×k , is the matrix with the 
vectors u1, . . . ,uk as columns. The vectors yi ∈ R

k corresponds to the i − th row of 
U  , i = 1, . . . , n. Finally, the points yi in Rk are grouped into C1, . . . ,Ck . The analysis 
identifies three distinct clusters, i.e., a “leading” cluster, a “follower” cluster, and an 
“outlier” cluster. The descriptive statistics are shown in Table 1.

Phase 2 investigated how trading volume affects the return of Metaverse crypto 
tokens by comparing the token performance across the three groups derived from 
Phase 1. We modeled the pair-wise lead–lag effect between clusters of tokens using 
an augmented Vector Autoregression (VAR) model, where the weighted average 
daily returns of the three clusters of tokens are analyzed in pairs. The variables in 
our model are in the form of time series and are autocorrelated. The VAR model is 
used as a logical extension of the univariate autoregressive model due to its flexibility 
and capacity to quantify the causal effects among dynamic multivariate time series. It 
has been widely adopted in studies of policy analysis, macroeconomic planning, and 
financial markets to investigate the causal relationships among variables such as eco-
nomic growth, inflation, imports, exports, exchange rate, oil prices, and stock prices 
(Hsu et  al. 2008; Lütkepohl 2005; Siggiridou and Kugiumtzis 2015; Tsay 2005). The 
analyses in the two stages built on each other, lending credence to the idea that fol-
lower tokens tend to partially replicate the performance fluctuations of the leading 
tokens in subsequent periods.

The VAR model, a multivariate time series model, is to explain the dynamic rela-
tionships between various variables (Lütkepohl 2005). The model is frequently used 
in econometrics and finance to examine how various variables relate to one another 
through time and forecast future value (Enders 2010). The Toda-Yamamoto (TY) speci-
fication is used to determine the direction of causality between two time series variables. 
It is based on the idea of testing the significance of lagged variables in a VAR model 
(Toda and Yamamoto 1995). In the TY procedure, the VAR model captures the linear 
interdependence between the two time series, and the TY procedure tests for causality 

Table 1 Summary statistics of token clusters

Category Observations Mean 
trading 
Volume 
(USD in 
Millions)

Std. dev 
(USD in 
Millions)

Min 
(USD in 
Millions)

Max 
(USD in 
Millions)

Skewness Kurtosis

Cluster 1 
Leading

58 36.69 34.89 2.01 266.80 2.36 8.35

Cluster 2 Fol-
lower

111 0.35 0.27 0.04 1.24 0.89 -0.14

Cluster 3 
Outlier

28 0.004 0.04 0.00 0.73 18.05 336.21

Grand Total 197 11.00 10.36 0.63 78.95 2.33 8.17
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by examining the impulse response functions and forecast error variance decomposi-
tions of the VAR model (Toda and Yamamoto 1995).

Following the TY procedure, we build Eqs.  (1) and (2) to examine the pair of a causal 
relationship between leading tokens and follower tokens as discussed in the first step. In the 
Eq. (1), Ft and Lt are vectors of time series variables. Lt  denotes the daily return of leading 
tokens (Group 1). Ft represents the daily return of follower tokens (Group 2). p denotes 
the lag order; ai and bi are parameters to be estimated, a0 is the constant term and ut is the 
error term. The VAR ( p ) specification of the model implies that each variable depends on 
its own lags and the lags of the other variables up to order p . For Eq. (1), the null hypothesis 
is H0 : b1, . . . , andbp are all equal to zero, while the alternative hypothesis HA is "Not H0 ." 
Ft Granger causes Lt  if H0 may be rejected. We may learn from the test if leaders’ returns 
are better predicted by their own histories and the histories of their followers’ returns than 
by their own histories alone. Similarly, ci and di are parameters to be estimated, c0 is the 
constant term and vt is the error term in Eq. (2). H0 is d1, . . . , anddp are all zero in Eq. (2), 
but HA is "Not H0 ."  Lt  does not Granger-cause Ft  if H0 cannot be rejected. We may learn 
from the test if followers’ token returns are better predicted by their own histories and the 
histories of leaders’ returns than by their own histories alone.

Second, we also use equations to test causality between leading tokens and outlier tokens 
as denoted in Eqs. (3) and (4).  Lt represents the daily return of leading tokens (Group 1). 
 Ot represents the daily return of outlier tokens (Group 3). ei and fi are parameters to be 
estimated, e0 is the constant term and εt is the error term in Eq. (3). For Eq. (3), the null 
hypothesis is H0 : f 1, . . . , andfp are all equal to zero, while the alternative hypothesis HA is 
"Not H0 ." Ot Granger causes Lt  if H0 may be rejected. We may learn from the test if leaders’ 
returns are better predicted by their own histories and the histories of the outliers’ returns 
than by their own histories alone.  gi and hi are parameters to be estimated, g0 is the con-
stant term and ηt is the error term in Eq. (4). H0 is h1, . . . , andhp are all zero in Eq. (4), but 
HA is "Not H0 ."  Lt  does not Granger-cause Ot  if H0 cannot be rejected. We may learn from 
the test if outliers’ token returns are better predicted by their own histories and the histories 
of leaders’ returns than by their own histories alone. Finally, another set of equations, rep-
resented by Eqs. (5) and (6), is utilized to examine the causal links between follower tokens 
and outlier tokens.

(1)Lt = a0 + a1Lt−1 + .....+ apLt−p + b1Ft−1 + .....+ bpFt−p + ut

(2)Ft = c0 + c1Ft−1 + .....+ cpFt−p + d1Lt−1 + .....+ dpLt−p + vt

(3)Lt = e0 + e1Lt−1 + .....+ epLt−p + f1Ot−1 + .....+ fpOt−p + εt

(4)Ot = g0 + g1Ot−1 + .....+ gpOt−p + h1Lt−1 + .....+ hpLt−p + ηt

(5)Ft = k0 + k1Ft−1 + .....+ kpFt−p +m1Ot−1 + .....+mpOt−p + ξt

(6)Ot = n0 + n1Ot−1 + .....+ npOt−p + s1Ft−1 + .....+ spFt−p + δt
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Results
Three clusters of tokens are identified through spectral clustering and the statistics of 
the clusters are summarized in Table 1. Cluster 1 (58 tokens) and Cluster 2 (111 tokens) 
are denoted as the “leading” and the “follower” clusters respectively, based on their aver-
age trading volumes. We verified the cluster membership of the mainstream Metaverse 
tokens such as Decentraland (MANA) Coin, The Sandbox (SAND) Coin, Axie Infinity 
(AXS) Coin, Enjin Coin, and WEMIX Coin, etc., and found that all these large tokens 
by market capitalization belong to the leading cluster. Refer to Annex for a list of abbre-
viations and definitions in full. The last cluster shown in Table 1 is the smallest in size 
(28 tokens) and sparse. Its summary statistics are markedly different from the other two 
clusters. Clustering-based outlier detection approaches assume that normal data belong 
to large and dense clusters, whereas outliers belong to small or sparse clusters (Cassisi 
et al. 2013). As a result, Cluster 3 is labeled as the “outlier” cluster. We calculated the 
Calinski–Harabasz Index for the outcomes of spectral clustering, offering a quantita-
tive measure of the clustering effectiveness by assessing the compactness and separation 
of clusters. In comparison to K-means and hierarchical clustering, spectral clustering 
yielded a higher index value of 151.68. This result signifies that the algorithm has effec-
tively generated well-defined clusters characterized by minimal within-cluster variance 
and maximal between-cluster variance. Hence, spectral clustering is deemed more suc-
cessful in creating clusters that are both distinct and homogeneous.

After applying Spectral Clustering, we also analyse the structure of the similarity 
matrix and graph utilized in the algorithm to verify the results from the spectral cluster-
ing algorithm. The similarity matrix captures pairwise relationships between data points 
based on a chosen similarity measure. This matrix can be represented as a weighted 
graph, where each data point acts as a node, and the edge weights signify the similar-
ity between the nodes. By examining the minimum spanning tree (MST), we gain valu-
able insights into the connectivity and relationships among the data points, as the MST 
connects all nodes without forming cycles. Figure 3 shows the spanning tree of spectral 
clustering. Through this exploration, clusters or subgroups of points emerge, exhibiting 
close connections based on their similarities. In the MST, we can observe long edges or 
bridges that link different parts of the tree. These edges are indicative of outlier nodes, 
potentially acting as bridges between distinct clusters or subgroups, such as the nodes 
in the “outlier” group. Additionally, we identify nodes with a high degree of centrality 
within the MST, representing hubs within a cluster. These central nodes play a signifi-
cant role in maintaining connectivity within their respective clusters. Although an MST 
is by nature acyclic, the presence of loop-like or cyclic structures within it can suggest 
the existence of subgroups or clusters. These loops signify strong connections and cyclic 
relationships among a subset of nodes, potentially representing distinct clusters, such as 
the “leading” group and the “follower” group.

We also examine the trading volume patterns over the sampled period for all three 
clusters: leading tokens (Cluster 1), follower tokens (Cluster 2), and outlier tokens (Clus-
ter 3), illustrated in Fig. 4. This graphical representation reveals that the trading volume 
of leading tokens was subdued from March to May, experienced an increase, and reached 
its initial peak in July 2021, followed by a significant decline from the peak in Novem-
ber 2021. The trading volume patterns among these three clusters exhibit a substantial 
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difference, with a noticeable distinction in magnitudes. However, due to these magni-
tude differences, the patterns of follower and outlier clusters are not clearly observable 
in Fig. 3. Therefore, we visualize these differences by creating another line chart using a 
dual-axis approach in Fig. 4, which will be further explained in subsequent paragraph.

Additionally, T-test and one-way ANOVA test were conducted on the centroids of the 
three clusters. The centroids of Cluster 1 (leading) and Cluster 2 (followers) are statisti-
cally different, as confirmed by a T-test (p value < 0.001 and t-statistics = 19.87). A one-
way ANOVA test was utilized to identify statistically different mean values among the 
centroids of the three clusters. The F-statistic for the one-way ANOVA was 394.78, and 
the associated p value < 0.001, indicating a statistically significant difference among the 
centroids. Both T-test and ANOVA tests were carried out using the Python library Scipy.

Fig. 3 Spanning tree of spectral clustering

Fig. 4 Trading Volume across Clusters
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The trading patterns are detailed and clarified in a dual-axis line chart in Fig. 5. The 
follower cluster mirrors the pattern of the leading cluster but on a smaller scale (with a 
100-times difference in magnitude in the dual axis). The follower cluster exhibits lower 
volatility and demonstrates correlated patterns with the leading cluster. Notably, dur-
ing the peak periods in July 2021 and November 2021, the follower cluster responded 
more slowly, climbing to lower levels than the leading cluster with noticeable lags. In 
contrast, the outlier cluster maintains minimal trading volume, remaining stagnant for 
the majority of the time, with a slight increase observed in November 2021. A compari-
son between the leading and follower clusters reveals observable correlations and simi-
lar patterns, prompting an in-depth exploration of the dynamics between these clusters. 
The primary inquiry revolves around determining whether there is significant causality 
between the time series of returns for leading and follower tokens.

Then, to validate H1, we further test the causality relationship between the daily 
returns of the leading Metaverse tokens and the daily returns of the follower tokens 
using the augmented VAR model. We applied the Toda and Yamamoto (TY) procedure, 
specifically designed for variables with unknown orders of integration. In contrast to the 
Johansen-Juselius method (Johansen and Juselius 1990), the TY approach eliminates the 
need for preliminary cointegration tests (Toda and Yamamoto 1995). Its utility is par-
ticularly notable when assessing both bilateral and unilateral causality, where time series 
exhibit different orders of integration. When reporting the results from the TY proce-
dure, we first ensure the stationarity of time series data because the use of nonstationary 
time series could result in erroneous regression (He and Maekawa 2001). We conducted 
two distinct unit root tests for the assessment of our time series data. Employing both 
the Augmented Dickey–Fuller (ADF) test, which posits the null hypothesis of time-
series non-stationarity, and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, which 
posits the null hypothesis of time-series stationarity, and cross-verified the results. 
Table 2 presents the ADF and KPSS statistics results for the daily return of leading, fol-
lower, and outlier tokens. The outcomes indicate that the first-order difference renders 

Fig. 5 Trading volume across clusters (dual axis)
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these time series stationary, thereby allowing us to infer the maximum order of integra-
tion for the VAR models (Toda and Yamamoto 1995).

As a next step, we test whether leading tokens exert effects on the follower tokens’ 
returns. Specifically, increased (decreased) returns of leading tokens lead to higher 
(lower) returns of the follower tokens. Second, we observe if follower tokens fluctua-
tions would affect the returns of leading tokens. The timing and length of the effects 
are also examined. Table 2 illustrates that the first-order difference of variables  Lt,  Ft,  Ot 
eliminates the unit root for the three time series. As a result, the maximum order of inte-
gration is one, represented as I (1). Following that, the augmented VAR model is devel-
oped using the levels of the data. The appropriate lag for the variables is determined 
by the collective information indices of Akaike Information Criterion (AIC), Hannan 
Quinn (HQ), Schwarz Criterion (Hens and Schenk-Hoppé 2009), and Final Prediction 
Error (FPE). Based on the outcomes of these criteria, four lags are chosen. According 
to the TY procedure, a cointegration test is not needed to avoid pretest bias. However, 
the VAR model must be specified to guarantee that the residual value has no serial cor-
relation. The Portmanteau test demonstrates that a lag of four removes serial autocor-
relation in residuals for all equations. Through the tests for misspecification, a lag of five 
is used including one lag of the maximum order of integration to enter into each of the 
equations. Then, the augmented VAR model for Eqs. (1) to (6) is constructed accordingly 
with a Wald test. The test is to determine if the coefficients of the first four lagged  Lt,  Ft, 
or  Ot values in the equations are zero. The lag of five is not included since the additional 
lagged value is used to fix asymptotics of the Wald test statistics. Rejection of the Wald 
test suggests the existence of Granger causality between the pair of variables.

Expectedly, Table 3 shows the mutual causality between leading tokens’ returns and 
follower tokens’ returns. These results imply that low-volume tokens’ returns respond to 

Table 2 Test of ADF and KPSS

***p < 0.001; **p < 0.01; *p < 0.05

Variable Description ADF test KPSS test

Lt Daily return of leading tokens − 6.1817 0.3700

D(Lt) Difference in daily return of leading tokens − 10.8060** 0.0087

Ft Daily return of follower tokens − 4.9691 0.3249

D(Ft) Difference in daily return of follower tokens − 9.8679** 0.0094

Ot Daily return of outlier tokens − 5.3239 0.1091

D(Ot) Difference in daily return of outlier tokens − 8.5863** 0.0113

Table 3 Granger causality analysis

***p < 0.01; **p < 0.05; *p < 0.1; Selection criteria includes Akaike Information Criterion (AIC), Hannan Quinn (HQ), Schwarz 
Criterion (Hens and Schenk-Hoppé 2009), and Final Prediction Error (FPE)

Causality directions Lag Selection criteria WALD statistic P value

Leading tokens → follower tokens 4 AIC, H.Q., SC, FPE 8.6 0.07*

Follower tokens → leading tokens 4 AIC, H.Q., SC, FPE 8.8 0.07*

Leading tokens → outlier tokens 4 AIC, H.Q., SC, FPE 0.85 0.93

Outlier tokens → leading tokens 4 AIC, H.Q., SC, FPE 2.3 0.68

Follower tokens → outlier tokens 4 AIC, H.Q., SC, FPE 0.9 0.76

Outlier tokens → follower tokens 4 AIC, H.Q., SC, FPE 0.71 0.95
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the changes in leading tokens’ returns. On the other hand, low-volume tokens’ returns 
also exert an impact on leading tokens’ returns. Hence, the degree of impact and its 
directions need further examination through the augmented VAR models. Table 3 also 
highlights that there is no significant evidence to reject the non-causality hypotheses 
between Group 1 and Group 3, Group 2 and Group 3. That is, the causal relationships 
between outliers’ returns and the other two groups cannot be observed, which further 
verifies the outlier cluster membership.

Table 4 shows the results of the augmented VAR Eqs. (1) and (2). It indicates that the 
followers’ returns respond to the changes in the leaders’ returns in the same direction 
with a one-period lag. The return of followers is likewise influenced by its own histori-
cal returns with a four-period lag. Meanwhile, changes in the returns of followers cause 
changes in the leaders’ returns with a four-period lag. As a result, Hypothesis 1 is vali-
dated. Because high-volume Metaverse tokens respond to market-wise information 
faster, returns on high-volume Metaverse tokens lead returns on low-volume ones.

In conclusion, this study utilizes spectral clustering techniques to identify a well-bal-
anced grouping of time series data comprising 197 Metaverse tokens, each spanning 
365 observations (representing days) per series (Von Luxburg 2007). Through this clus-
tering approach, two distinct clusters, namely the "leading" and "follower" clusters, are 
determined based on their respective trading volumes. Furthermore, the study confirms 
the veracity of Hypothesis 1 by establishing a causality relationship between the daily 
returns of leading Metaverse tokens and those of follower tokens using the VAR (Vector 
Autoregressive) model.

Discussion
Contributions to knowledge and methodology

One of the paramount concerns of tokenomics among the academic community is 
understanding how information is transmitted to markets and within the markets, and 
how markets impound this information into token prices (Cong et al. 2021). Traditional 
asset-pricing theories imply that knowledge dispersion occurs instantly in a complete 
and frictionless market (Hens and Schenk-Hoppé 2009). Although this has been dem-
onstrated otherwise in regular financial markets (Hou 2007), there is a lack of empirical 

Table 4 The results of the augmented VAR test—Eqs. (1) and (2)

***p < 0.001; **p < 0.01; *p < 0.05

Variable Equation 1 Equation 2

Lt-1 0.040134 0.113841*

Ft−1 − 0.073763 0.106468

Lt−2 0.094056 0.01886

Ft−2 0.029343 − 0.04124

Lt−3 − 0.023061 0.103661

Ft−3 0.050363 0.00862

Lt−4 0.098523 0.040011

Ft−4 0.121439* 0.231622***

Lt−5 − 0.100767 0.015465

Ft−5 0.035471 0.042579
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evidence to suggest that investors too face significant frictions in the Metaverse token 
market.

A high trading volume can indicate significant buyer and user interest, while a low 
trading volume, in comparative terms, can sometimes act as a proxy for insufficient 
information updating or dissemination (Chae 2005). Market underreaction occurs when 
investors fail to keep sector-specific public information up to date (Driesprong et  al. 
2004). Thus momentum effects are expected to occur in low-volume tokens but not in 
high-volume ones in the intermediate horizon (Lee and Swaminathan 2000). Moreover, 
the observed causality relationship between the returns of leading and follower tokens 
indicates the presence of such herding behavior (Spyrou 2013), wherein users tend to 
imitate the actions of others rather than conducting independent analysis for Metaverse 
tokens.

This is the first study to document the lead–lag effect of Metaverse tokens. By explor-
ing the interactions between the different clusters of Metaverse tokens, we discover that 
the returns of each cluster behave differently, which suggests that information can and 
occasionally does travel slowly within the market. In other words, the leading cluster 
of tokens could precede the followers, based on the information advantage. Metaverse 
tokens are distinct from traditional cryptocurrencies like Bitcoin and Ethereum in their 
broad range of applications such as representing ownership of virtual property, foster-
ing community governance, and empowering creators to monetize their virtual crea-
tions, setting them apart from traditional cryptocurrencies mainly used for financial 
transactions(Cheng et al. 2022). The identification and validation of leading and follower 
clusters based on trading volumes for Metaverse tokens expands our understanding of 
how these tokens behave within the virtual world realm, shedding light on their unique 
dynamics, and potentially contributing to the development of new economic models 
specific to the metaverse. In a mostly bullish market for Metaverse tokens(Vidal-Tomás 
2022), our findings imply that high-volume tokens tend to enjoy earlier sectoral boom 
because investors keep the information up to date, while the underreaction of lower-
volume tokens can be attributed to slower adjustment to market-wide news.

Collectively, the empirical results show that trading volume is a strong predictor of the 
observed lead–lag patterns in Metaverse crypto tokens. This result is consistent with the 
differential speed of adjustment hypothesis, i.e. volume-related leadership (Chordia and 
Swaminathan 2000).

In terms of methodology, the research marks the first attempt to use spectral cluster-
ing to model the latent grouping structure of tokens. Spectral clustering, as applied in 
our research, involves a novel approach to time series clustering by leveraging the spec-
tral decomposition of the affinity matrix. Our findings substantiate that this framework 
is not only suitable but also highly effective in delineating cluster memberships within 
the context of tokens or cryptocurrency performance. The clusters derived from our 
analysis are both theoretically grounded and practically relevant, which open up new 
avenues for understanding and interpreting complex data structures,

Implications for practitioners

Although the technology is still in its early stages, Metaverse tokens have started to pique 
the interest of mainstream investors (Vidal-Tomás 2022). Our findings suggest that trade 
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volume contains vital information concerning cross-correlation patterns. Traders could 
strategically exploit the lead–lag relationship by entering and adjusting positions in fol-
lower tokens based on analysis of the leading cluster’s market movement. The lead–lag 
effect could also be integrated into classic alpha strategies to enhance their performance 
(Criscuolo and Waelbroeck 2012). Therefore, our findings have the potential to enhance 
trading strategies and returns within the Metaverse token market.

The predictability of Metaverse token returns provides insight into risk propaga-
tion and investment market segmentation. By comprehending the grouping structure 
inherent in Metaverse tokens and the interplay between leading and follower tokens, 
investors and risk managers can effectively anticipate and manage market risks, and 
evaluate potential contagion effects and the propagation of risks across diverse clusters 
of Metaverse tokens. Consequently, this understanding of cluster dynamics empowers 
investors to make well-informed decisions.

From a managerial standpoint, this research can inform decision-making for busi-
nesses operating in the Metaverse ecosystem, helping them better navigate the market, 
manage risks, and optimize strategies related to Metaverse tokens. It can also aid in the 
creation of monetization strategies for virtual world developers, offering insights into 
how to harness the lead–lag effect for their benefit. Venture capitalists (VCs) interested 
in the Metaverse space can use this information to evaluate potential investment oppor-
tunities, assess the growth potential of different tokens, and make more informed deci-
sions regarding funding and partnerships. It underscores the importance of keeping a 
close watch on the dynamics of Metaverse token clusters to maximize returns and miti-
gate risks in this emerging and rapidly evolving market.

From the regulators’ perspective, our findings imply that herd-like instinct may occur 
among armature individual investors in the Metaverse token market, where these inves-
tors tend to follow what they perceive others to be doing rather than their own analysis. 
Inadequate individual thought to counteract the other investors’ influence in arriving at 
decisions can expose them to higher risk (Spyrou 2013). A comprehensive understand-
ing of these dynamics can assist regulators and policymakers in formulating appropriate 
measures to promote market efficiency, safeguard investor interests, and ensure stability 
within the Metaverse token market. To refrain from sending the herd off the cliff edge, a 
regulatory regime tailored to the specific characteristics and distinct risks of Metaverse 
coins should be recommended.

Conclusion and future research
In conclusion, this study utilizes spectral clustering techniques to categorize 197 
Metaverse tokens into two clusters based on their trading volumes, confirming a 
lead–lag relationship between daily returns of leading and follower tokens through a 
Vector Autoregressive (VAR) model. Traditionally, markets are believed to instantly 
incorporate information, but our findings suggest potential frictions in Metaverse 
token markets. Low-volume tokens might exhibit momentum effects due to slower 
information updates, while high-volume tokens respond faster to marketwide infor-
mation, showcasing herding behavior among users. This study pioneers document-
ing lead–lag effects in Metaverse tokens and suggests that information transmission 
within this market might be gradual, influenced by tokens’ unique applications 
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beyond financial transactions. Understanding the leading and follower clusters based 
on trading volumes aids comprehension of the Metaverse token behavior, potentially 
contributing to specific economic models for the metaverse.

In addition, trading volume emerges as a strong predictor of lead–lag patterns in 
Metaverse tokens, aligning with the volume-related leadership hypothesis. Spec-
tral clustering effectively delineates cluster memberships within token performance, 
offering insights into complex data structures. These findings hold implications for 
traders, suggesting strategies leveraging the lead–lag relationship for improved per-
formance and risk management. Moreover, they offer insights into risk propagation 
and market segmentation, empowering investors and risk managers to anticipate and 
manage risks within diverse token clusters.

For businesses in the Metaverse ecosystem, this research informs decision-making, 
aiding risk management and strategy optimization concerning Metaverse tokens. Ven-
ture capitalists can use these insights to evaluate investment opportunities and growth 
potential in the Metaverse space. Regulators should take note of potential herd-like 
behavior among individual investors and consider tailored measures to promote market 
efficiency, protect investor interests, and ensure stability in the Metaverse token market. 
Understanding these dynamics can prevent uninformed decisions driven by herd behav-
ior and guide the formulation of a regulatory framework specific to Metaverse tokens.

There are some limitations in this study that we would like to address in future 
research in this area. Firstly, the data set used in this paper did not document the 
process of information dissemination and information flow, which could be observed 
through discussions in major news outlets and forums. If the information dissemina-
tion process could be captured and incorporated into future studies, the result may 
help us better understand how leading and follower tokens respond to information 
and to what extent the lead–lag exists. On the other hand, the difference in informa-
tion dissemination may not be an exclusive driving force behind the lead–lag patterns 
in portfolio returns. For example, the differences in the quality of Metaverse/token-
specific news could be another important factor. In future studies, it will be useful to 
collect data regarding the specific features of each of the Metaverse tokens to identify 
possible generic trends among the different types of tokens to help us better under-
stand the price determination mechanism for the crypto tokens.
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