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Abstract 

In the data envelopment analysis (DEA) literature, productivity change captured 
by the Malmquist productivity index, especially in terms of a deterministic environ-
ment and stochastic variability in inputs and outputs, has been somewhat ignored. 
Therefore, this study developed a firm-specific, DEA-based Malmquist index model 
to examine the efficiency and productivity change of banks in a stochastic environ-
ment. First, in order to estimate bank-specific efficiency, we employed a two-stage 
double bootstrap DEA procedure. Specifically, in the first stage, the technical efficiency 
scores of banks were calculated by the classic DEA model, while in the second stage, 
the double bootstrap DEA model was applied to determine the effect of the contex-
tual variables on bank efficiency. Second, we applied a two-stage procedure for meas-
uring productivity change in which the first stage included the estimation of stochastic 
technical efficiency and the second stage included the regression of the estimated 
efficiency scores on a set of explanatory variables that influence relative performance. 
Finally, an empirical investigation of the Iranian banking sector, consisting of 120 bank-
year observations of 15 banks from 2014 to 2021, was performed to measure their 
efficiency and productivity change. Based on the findings, the explanatory variables 
(i.e., the nonperforming loan ratio and the number of branches) indicated an inverse 
relationship with stochastic technical efficiency and productivity change. The implica-
tion of the findings is that, in order to improve the efficiency and productivity of banks, 
it is important to optimize these factors.

Keywords: Stochastic data envelopment analysis, Stochastic Malmquist productivity 
index, Double bootstrap procedure, Technical efficiency, Banking

Introduction
Data envelopment analysis (DEA), introduced by Charnes et al. (1978; also known as 
the CCR model) and extended by Banker et al. (1984; also known as the BCC model), 
is a robust methodology for evaluating the relative efficiency of a set of homogene-
ous firms,1 especially when they consume multiple incommensurate inputs to gener-
ate multiple incommensurate outputs. During the last three decades, DEA has been 
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applied in various areas, including the banking industry, the insurance sector, educa-
tional systems, healthcare units, agricultural production, military logistics, etc. This 
has enabled decision-makers to examine a significant number of real applications in 
various sectors. One of these widely studied applications is measuring productivity 
change over time. Specifically, the performance of a firm tends to change over time, 
which can lead to progress or regress in productivity. In this regard, the Malmquist 
productivity index (Malmquist 1953) is a well-known measure for determining the 
total factor productivity (TFP) of firms.

In traditional DEA models (and in subsequent extensions), production sets are 
assumed to be constructed by deterministic data. Consequently, existing TFP meas-
ures are presented in a deterministic environment. However, this ignores the vari-
ability and uncertainty of such data. To the best of our knowledge, few attempts have 
been made to examine productivity change in a stochastic environment. As is well-
known, real-life problems are often stochastic and, in the presence of stochastic data 
variations, the concepts of technical efficiency and productivity change in a deter-
ministic DEA setting may become sensitive to such variations. In this regard, it is 
important to modify classic DEA models in such a way that they can be applied in a 
stochastic environment. Meanwhile, when using classic DEA models to evaluate per-
formance, it is important to account for all inputs and outputs. Based on the systemic 
view of the production process in Fig. 1, in addition to firm-specific inputs and out-
puts, there are other exogenous factors (e.g., nondiscretionary factors and managerial 
effort and ability) that can influence the efficiency of firms.

In order to obtain a firm-specific measure of efficiency and productivity change, 
it is important to remove the impact of these contextual variables on the efficiency 
and productivity of firms. Thus, this study developed a firm-specific, DEA-based 
Malmquist index model to examine the efficiency and productivity change of firms in 
a stochastic environment. In this case, we assumed that, in addition to firm-specific 
inputs and outputs, there are other factors (e.g., contextual and explanatory variables 
as well as managerial effort and ability) that may have a significant impact on the per-
formance and productivity of firms. The question of how to handle such factors when 
analyzing the efficiency and productivity of firms in a stochastic environment is par-
ticularly important in this study.

Fig. 1 Systemic view of the production process
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To achieve a firm-specific technical efficiency and productivity measure, it is impor-
tant to remove the impact of contextual variables on the efficiency of firms. Banker and 
Natarajan (2008), Banker et al. (2019) found that when input and output data are gener-
ated by a monotone increasing and concave production function, the application of a 
two-stage procedure, in which the first stage involves the estimation of technical effi-
ciency through DEA and the second stage involves the regression of the estimated effi-
ciency scores on the contextual variables through ordinary least squares, can generate 
consistent estimators of the parameters of such variables. In this case, to estimate firm-
specific efficiency, we employed a two-stage double bootstrap DEA procedure. Specifi-
cally, we first estimated the technical efficiency scores of the banks by the BCC model, 
after which the double bootstrap DEA model was applied to determine the impact of the 
contextual variables on bank efficiency.

In order to set up the firm-specific stochastic Malmquist productivity index, we first 
used the stochastic BCC model to calculate the stochastic technical efficiency of each 
firm based on specific inputs and outputs. Then, the logarithm of the stochastic techni-
cal efficiency score obtained from the first stage was regressed on a set of contextual 
variables. In order to demonstrate the real applicability of our procedure, we analyzed 
the data for 15 Iranian banks from 2014 to 2021.

The Iranian banking sector started in 1888, but by 2010, many of the banks moved 
into the private sector. Therefore, it is important to examine the progress (or regres-
sion) in the banking industry in general, and in the unstable banking industry (such as 
Iran) in particular. In this empirical application, we analyzed the technical efficiency 
and productivity change in the nongovernmental banking sector in Iran. Although our 
proposed application is illustrative, the firm-specific stochastic Malmquist productiv-
ity index model can potentially be applied to evaluate productivity change in many 
real-life situations in which the underlying production processes are stochastic. Fig-
ure 2 presents the conceptual framework of our procedure, including both the meth-
odological and applied framework.

The remainder of this study is organized as follows. Section  “Literature review” 
provides a brief literature review of related works on deterministic and stochastic 
environments, while Section  “Methodology” discusses the proposed approach for 
estimating productivity change in a stochastic environment. Section  “Analysis and 
results in the banking sector” applies the proposed approach to evaluate productiv-
ity growth in the sample of Iranian banks, while Section  “Conclusion” presents the 
conclusion.

Literature review
Previously, the evaluation of technical efficiency in the classic DEA framework was 
performed by using deterministic inputs and outputs. However, to account for sto-
chastic inputs and outputs, several scholars have extended the deterministic DEA 
framework to the stochastic environment. In this regard, Sengupta (1982, 1987) 
was the first to propose the chance-constrained theory in the DEA framework 
to evaluate the technical efficiency of firms. The research of Sengupta has since 
been extended by numerous scholars (Sengupta 2000; Banker 1993; Cooper et  al. 
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1996, 1998; Land et al. 1993; Olesen and Petersen 1995; Horrace and Schmidt 1996; 
Grosskopf 1996; Simar 1996; Simar and Wilson 1998; Cooper et  al. 2011; Shiraz 
et al. 2020; Simar and Wilson 2015; Olesen and Petersen 2016; Kao and Liu 2014; 
Kao and Liu 2019; Wei et al. 2014).

During the last three decades, several authors have used the DEA-based 
Malmquist productivity index to capture productivity change over time. For exam-
ple, using the true fixed-effects model of trans-log stochastic production frontier, 
Chou et al. (2012) evaluated the performance of information technology industries 
for 19 Organization for Economic Cooperation and Development countries from 
2000 to 2009, while Falavigna et  al. (2018) applied the DEA-based Malmquist pro-
ductivity index to understand court reforms. In related research, Odeck and Schøyen 
(2020) used the SFA-based Malmquist productivity index to evaluate the produc-
tivity and convergence of Norwegian container seaports, while Khoshroo et  al. 
(2022) proposed an alternative double frontier-based Malmquist productivity index 
to calculate the TFP of the energy sector in the presence of undesirable pollutants. 

Start
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Stochastic technical 

efficiency model
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productivity index
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banking sector

End

Predicting the optimal 
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Fig. 2 Conceptual framework
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Additionally, Giacalone et  al. (2020) used the DEA-based Malmquist productivity 
index to evaluate the dynamic efficiency of the Italian judicial system, while Yu and 
Nguyen (2023) used the Malmquist productivity index and two-stage dynamic pro-
duction structure to examine productivity change in Asia–Pacific airlines. Finally, 
Pourmahmoud and Bagheri (2023) applied the uncertain (imprecise) Malmquist 
productivity index to evaluate healthcare systems during the COVID-19 pandemic. 
For more related references, see Färe et al. (1994), Chen and Ali (2004), Kao (2010), 
Ma et al. (2017), Fernandez et al. (2018), Cao et al. (2019), Liu et al. (2021), Cho and 
Chen (2021), Zhao et al. (2022), and Bansal et al. (2022).

Although many studies have assessed the relative efficiency of production processes 
based on stochastic data, to the best of our knowledge, research on the measurement 
of productivity change under the stochastic DEA framework has been somewhat lim-
ited. However, Raayatpanah and Ghasvari (2011) applied the Malmquist productivity 
index in a stochastic environment and proposed a quadratic programming problem 
to calculate the TFP of firms. In this case, since the technical efficiency and subse-
quent productivity indexes were calculated by this nonlinear programming problem, 
their computational effort was relatively high. More recently, Arhin et al. (2023) used 
the double bootstrap DEA model to evaluate overall malaria spending efficiency in 
Sub-Saharan Africa.

To date, the evaluation of the Malmquist productivity index under the DEA frame-
work has been mainly conducted by using firm-specific inputs and outputs. However, 
to the best of our knowledge, other factors, such as explanatory and contextual vari-
ables, have yet to be considered. Therefore, in the following section, we present our 
methodology for developing a firm-specific, DEA-based Malmquist productivity index 
in both deterministic and stochastic environments, especially in the presence of con-
textual variables.

Methodology
Stochastic BCC model

Suppose that there are J  decision-making units (DMU), and each DMUj : j = 1, . . . , J  
uses random inputs xj = x1j , . . . , xIj  to produce random outputsỹj =

(
ỹ1j , . . . , ỹRj

)
 . In 

this case, all of the random input and output variables are assumed to be normally dis-
tributed with known mean and variance.

In the performance evaluation of real-world situations, the selection of an underlying 
model is important. In our real application in the Iranian banking sector, we found that 
the majority of the banks did not perform at an optimal level. In this sense, we believe 
that the variable returns to scale model of Banker et al. (1984; i.e., the BCC model) is 
more appropriate for analyzing the performance of banks than the constant returns to 
scale model of Charnes et al. (1978; i.e., the CCR model).

In related research, Land et  al. (1993) established the following DEA model (Model 
(1)) for the variable returns to scale in order to estimate the input-oriented relative effi-
ciency of a specific DMUo:
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where α ∈ [0, 1] is the user-defined parameter that reflects the confidence level and θ is 
the abatement factor that reduces the level of inputs (radially). In addition, suppose that 
xij : i = 1, . . . , I and yrj : r = 1, . . . ,R are the mean values of the inputs and outputs for 
jth DMU, respectively, while aij and brj are their corresponding standard deviations of 
the inputs and outputs, respectively. Meanwhile, function φ is the cumulative standard 
normal distribution function and φ−1 is its inverse. Thus, according to the central limit 
theorem, the deterministic form of Model (1) can be represented as follows:

where:

If we use the single-factor assumption of random variables in economics and finance 
(Sharpe 1963; Kahane 1977), Model (2) can be transformed into the following linear 
form:
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In Model (3), p+i , p
−
i , q

+
r , andq

−
r  are deviation variables. In this case, it is not difficult to 

show that this model is feasible under all confidence levels of α . In related research, Banker 
(1993) developed a statistical foundation for DEA and claimed that DEA estimators are not 
only consistent, but that they also maximize likelihood. He also indicated that DEA estima-
tors of the best practice monotone increasing, and concave production function are maxi-
mum likelihood estimators. Thus, we present the following theorem:

Theorem 1 For any predetermined level of α ≤ 0.5 , the stochastic efficiency score calcu-
lated from Model (3) ranges from 0 to 1.

Proof See Cooper et al. (2011).

Definition 1 The unit under evaluation, DMUo , is stochastically efficient at confidence 
level α , if and only if θ∗o = 1.

It should be noted that Model (3) uses firm-specific stochastic inputs and outputs. How-
ever, as stated earlier, in many real-life processes, three types of variables (inputs, outputs, 
and contextual variables) can affect the performance of firms. In order to obtain a firm-
specific technical efficiency measure, we must remove the impact of contextual variables 
on firm efficiency. In this regard, we employed a two-stage double bootstrap DEA proce-
dure. Specifically, in the first stage, the technical efficiency scores of banks were calculated 
by the classic DEA model, while in the second stage, we used truncated regression analysis 
to determine the impact of the contextual variables on bank efficiency. In the latter stage, 
we also applied the following regression model (Model (4)):

where Log(Ep) is the logarithm of Euler’s number ( e = 2.71828 ) for the stochastic 
BCC efficiency score of DMUj obtained in this model. Moreover, z1, z2, . . . , zN are the 

(3)
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aforementioned contextual variables, while U is the error term. Based on the regression 
results, the refined measure of technical efficiency was computed as follows:

In this case, after removing the impact of the contextual variables on bank effi-
ciency, ENew

p  is the bank-specific efficiency score.

Stochastic productivity index

Measuring the productivity growth or productivity change of firms over time can play 
a key role in economic and business analytics. In this regard, the two main factors 
that can capture such growth or change include: general technological progress (or 
regress); and special initiatives within a firm. As stated earlier, the Malmquist pro-
ductivity index is a useful and suitable index for measuring the growth and produc-
tivity change of a firm in a deterministic environment. However, since the classic 
DEA-based Malmquist productivity index was mainly formulated for deterministic 
technologies, contextual/explanatory variables are basically ignored in productivity 
analyses. Specifically, production technology and production frontier are based on 
the assumption that inputs and outputs are certain and deterministic. Meanwhile, the 
systemic view of production can make evaluations more complicated, since it con-
siders multiple dimensions, including contextual/explanatory variables that can influ-
ence the performance of firms.

In related research, Banker and Natarajan (2008) found that when input and output 
data are generated by a monotone increasing and concave production function, the 
application of a two-step DEA approach in which technical efficiency is calculated 
in the first stage and a regression of the estimated efficiency scores on the explana-
tory variables is performed in the second stage can generate a consistent estimate of 
the parameters of the contextual variables. They also showed that DEA in the first 
stage followed by maximum likelihood estimation in the second stage can yield con-
sistent estimators of the impact of the contextual variables. The only exception is that 
the contextual variables must be independent from the input variables. Additionally, 
they used Monte Carlo simulations to compare the performance of their two-stage 
approach with the one- and two-stage parametric approaches. Following Banker 
and Natarajan (2008), after calculating the technical efficiency in the first stage, we 
regressed the log of our new productivity index on the stochastic contextual variables 
in the second stage. Considering that the explanatory variables are uncertain in sto-
chastic form, we used a stochastic regressors model, which is described as follows.

Suppose that we have J × T  observations on j = 1, . . . , J  DMUs and t = 1, . . . ,T  
years as DMU

(t)
j  , and that x(t)j = (x

(t)
1j , . . . , x

(t)
Ij ) and y(t)j = (y

(t)
1j , . . . , y

(t)
Rj ) are the means 
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(t)
j  ( DMUj in period t ), respectively. Moreover, sup-

pose that SEo(s, t) is the technical efficiency of DMUo in period s , against the technol-
ogy in period t . In order to estimate the relative efficiency of a specific DMU

(t)
o  in the 

first stage of our analysis, we solved the following stochastic BCC model:

(5)ENew
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Suppose that SEo(s, t) is the measure of the stochastic efficiency of DMUo in period 
s , against the technology in period t . Here, SEo(s, t) is estimated by solving the follow-
ing model (Model (7)):

Similarly, SEo(t, s) is the measure of the stochastic efficiency of DMUo in period t , 
against the technology in period s. It is important to note that in SEo(s, t) , the input 
and output data are taken from period s, while the technology is from period t. In this 
study, we first applied Model (7) to calculate stochastic efficiency measures SEo(s, t) , 
SEo(t, t) , SEo(t, s) , and SEo(s, s).

As stated earlier, Banker and Natarajan (2008) showed that when the input/out-
put data is generated by a concave and monotone increasing production function, a 
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two-stage procedure can determine the firm-specific efficiency score. In this regard, 
after calculating the stochastic BCC efficiency of DMUo, the following regression 
model (Model (8)) was used to determine the impact of the contextual variables on 
efficiency when the DMU has no control:

where z(s)nj : n = 1, . . . ,N , j = 1, . . . , J  are the contextual variables in period s, ε(s)o  is the 

error term, and β(s)
n : n = 1, . . . ,N  are the weights corresponding to the contextual vari-

ables in period s. Using Model 8, we also examined the contextual variables that affect 
efficiency score SEo(s, t) in order to remove their impact. It is important to note that 
the logarithm of the stochastic efficiency can be regressed on the contextual variables 
taken from the same period as the input/output data. Meanwhile, the assumption that 
“the explanatory variables are stochastic” poses no issue in the ordinary least squares 
estimation of β(s)

n : n = 1, . . . ,N  and ε(s)o  . In order to remove the impact of the contextual 
variables on efficiency when banks have no control, we refined stochastic technical effi-
ciencies SEo(s, t) , SEo(t, t) , SEo(t, s) , and SEo(s, s) by removing the effect of the contextual 
variables, as shown in Model (9):

In Model (10), the refined stochastic measures of efficiency in different time periods 
are denoted as SEo(s, s) , SEo(t, s) , SEo(t, t) , and SEo(s, t) . Here, the stochastic Malmquist 
productivity index for DMUo is as follows:

where STC(s, t) =
√

SEo(t,s)

SEo(t,t)
×

SEo(s,s)

SEo(s,t)
 is the technological change and SEC(s, t) = SEo(t,t)

SEo(s,s)
 

is the efficiency change.

Analysis and results in the banking sector
Due to the daily challenges faced by banks around the world, especially those in Iran, 
it is becoming increasingly clear that banking executives must optimize their perfor-
mance and productivity. During the last two decades, the performance analysis of banks 
and other financial institutions has attracted significant attention among economists 
and managers. As for the Iranian banking sector, it operated under the supervision of 
the government until 2008, after which it moved into the private sector. In this section, 
we present an illustrative empirical application of our proposed stochastic productivity 
growth model based on a sample of banks in Iran.

Description of the variables

First, an evaluation of bank efficiency requires the identification of inputs and out-
puts. In this regard, Banker et al. (2010) determined three types of variables in the 
banking system: input, output, and explanatory (or contextual) variables. Inspired by 
their research, we used four indicators as inputs and outputs: interest expenses and 
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other operating expenses (as inputs); and net interest revenue and operating revenue 
(as outputs). We also employed five explanatory variables: the total capital adequacy 
ratio; the nonperforming loan ratio; total assets; and the number of branches. In 
order to take the role of time into account, we used a time series dummy (1 for each 
specific year, or 0 otherwise). Table 1 summarizes the inputs, outputs, and contex-
tual variables.

In banks, annual data is generally kept as an average of 12 months, while monthly data 
is kept as a daily aggregation. Additionally, the mean and standard deviation of the data 
for each 12-month period are calculated. Considering the behavior and performance of 
banks, it is possible that all inputs and outputs are random variables. Table 2 present the 
descriptive statistics of the input, output, and contextual variables in this study. Overall, 
the data is based on 120 bank-year observations of 15 banks from 2014 to 2021.

Efficiency evaluation of the banks

In order to evaluate the stochastic efficiency of the sample of banks in each year, we used 
the two-stage procedure proposed by Banker and Natarajan (2008). In the first stage, we 
used Model (4) to calculate the stochastic BCC technical efficiency of the banks based 
on their specific input consumption and output generation. In this case, three different 
confidence levels were used: α = 0.1, 0.3, 0.5 . The results of the stochastic BCC efficiency 
at the three different confidence levels are given in Tables 3, 4, and 5, respectively. Mean-
while, the trends of the average stochastic BCC efficiency scores over time at the three 
different confidence levels are shown in Fig. 3. Based on the findings, the average sto-
chastic technical efficiency decreased from 2014 to 2018 and then increased. Addition-
ally, the maximum average stochastic efficiency occurred in 2021, while the minimum 
was in 2018.

Table 1 Input, outputs, contextual variables

Type of variables Description

Input variables Interest expense (IE), Other operating expenses (OE)

Output Variables Net interest revenue (NIR), Operating revenue (OR)

Contextual Variables Total capital adequacy ratio (TCAR), NPL ratio (NPLR), 
Total assets (TA), Number of branches (NB), Time 
series dummy (TSD)

Table 2 Summary statistics of mean of the data

Indicator Min Median Max Mean Std Q1 Q3

Inputs IE 12,463.7 41,186.14 2,255,442.54 403,791.01 641,022.21 20,365.60 637,010.15

OE 10,921.12 38,082.90 750,163.72 142,981.49 195,146.99 29,317.12 178,365.52

Out-
puts

NIR 102,980.39 150,876.39 2,209,283.69 411,561.99 537,132.9 130,221.03 338,595.24

OR 101,447.87 178,312.73 2,918,290.36 568,105.98 770,128.64 126,946.89 786,784.70

Con-
textual 
vari-
ables

TCAR 13.48 19.45 88.14 23.556833 15.503543 16.775 22.53

NPLR 0.3 1.32 1.8 1.0530833 1.4729465 0.8725 2.20

TA 1,199,890.57 5,409,334.59 123,761,924.4 24,285,919.69 35,568,940.13 1,868,356.17 27,948,449.27

NB 339 1055 3126 1241 761.89 581.25 1688
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Table 6 presents the descriptive statistics (mean and standard deviation) of the pro-
jection points corresponding to the inputs and outputs at a confidence level of α = 0.5 
(deterministic case). According to the findings, the first two inputs (interest expense 

Table 3 Stochastic BCC efficiency scores in different periods α = 0.1

Bank 2014 2015 2016 2017 2018 2019 2020 2021

1 0.8061 0.9189 0.9394 1 0.9211 1 0.8207 1

2 0.9173 0.9028 0.88 1 0.6216 0.7495 0.9494 1

3 0.5934 0.6593 0.658 0.8517 0.8831 0.7476 0.8471 0.8531

4 0.4546 0.5538 0.5531 0.5316 0.4659 1 0.5416 0.6174

5 0.1282 0.1254 0.1279 0.1399 0.1613 0.154 0.14 0.1377

6 0.8098 0.9856 1 1 1 0.6779 1 0.9451

7 0.1833 0.1692 0.1855 0.1663 0.1703 0.1976 0.1866 0.1735

8 0.955 0.8819 0.8561 0.7295 0.4769 0.38 0.3879 0.3723

9 1 0.9483 0.9279 0.876 0.8959 1 1 0.9748

10 1 0.9307 0.9004 1 0.8518 0.7957 1 1

11 0.4661 0.4792 0.4765 0.4624 0.5352 0.523 0.5946 0.6786

12 0.9462 0.8647 0.7825 0.7838 0.5479 0.4868 0.8424 0.9328

13 0.6944 0.6712 0.6501 0.6332 0.6022 0.5906 0.6693 1

14 0.7993 0.7057 0.6636 0.6281 0.6261 0.6222 0.696 0.6626

15 0.9336 0.7847 0.7535 0.733 0.7318 0.7196 0.77 0.7293

Min 0.1282 0.1254 0.1279 0.1399 0.1613 0.154 0.14 0.1377

Median 0.8061 0.7847 0.7535 0.733 0.6216 0.6779 0.77 0.8531

Max 1 0.9856 1 1 1 1 1 1

Mean 0.7125 0.7054 0.6903 0.7024 0.6327 0.6429 0.6964 0.7384

Std 0.2779 0.2629 0.2548 0.2727 0.2468 0.2561 0.2714 0.2899

Table 4 Stochastic BCC efficiency scores in different periods α = 0.3

Bank 2014 2015 2016 2017 2018 2019 2020 2021

1 0.7945 0.9119 0.9352 1 0.9139 1 0.8186 1

2 0.9019 0.8942 0.8786 1 0.616 0.745 0.9482 1

3 0.5838 0.6452 0.6447 0.8345 0.8784 0.7403 0.8429 0.8499

4 0.4269 0.5307 0.5307 0.5116 0.4449 1 0.521 0.601

5 0.1031 0.1012 0.1037 0.1187 0.1269 0.1323 0.1183 0.1163

6 0.8098 0.9856 1 1 0.9685 0.6779 1 0.9429

7 0.1465 0.1353 0.1411 0.1257 0.1308 0.1688 0.1614 0.1486

8 0.955 0.8819 0.8561 0.7239 0.4769 0.3639 0.3755 0.3578

9 1 0.9398 0.9225 0.876 0.8959 1 1 0.9697

10 1 0.9307 0.9004 1 0.8121 0.7543 1 1

11 0.4611 0.4772 0.4765 0.4624 0.5352 0.523 0.5946 0.6602

12 0.8791 0.8107 0.7309 0.7529 0.5479 0.4717 0.8424 0.9212

13 0.6944 0.6698 0.6501 0.6332 0.6022 0.5906 0.6267 1

14 0.7435 0.7057 0.6636 0.6281 0.6261 0.6222 0.6534 0.6222

15 0.8568 0.7847 0.7535 0.733 0.7318 0.7196 0.7407 0.7009

Min 0.1031 0.1012 0.1037 0.1187 0.1269 0.1323 0.1183 0.1163

Median 0.7945 0.7847 0.7309 0.733 0.616 0.6779 0.7407 0.8499

Max 1 0.9856 1 1 0.9685 1 1 1

Mean 0.6904 0.6936 0.6792 0.6933 0.6205 0.6339 0.6829 0.7260

Std 0.2795 0.2691 0.2636 0.2807 0.2512 0.2623 0.2791 0.2980
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and other operating expenses) must be reduced by 16% and 45%, respectively. In con-
trast, the net interest revenue and operating revenue must be increased by 12% and 1%, 
respectively.

Table 5 Stochastic BCC efficiency scores in different periods α = 0.5

Bank 2014 2015 2016 2017 2018 2019 2020 2021

1 0.7846 0.9096 0.9316 1.0000 0.9069 1.0000 0.8171 1.0000

2 0.8829 0.8829 0.8763 1.0000 0.6117 0.7418 0.9473 1.0000

3 0.5743 0.6346 0.6348 0.8180 0.8748 0.7349 0.8397 0.8472

4 0.4065 0.5138 0.5141 0.4969 0.4294 1.0000 0.5054 0.5887

5 0.0792 0.0780 0.0802 0.0970 0.0971 0.1096 0.0960 0.0947

6 0.8055 0.9846 1.0000 1.0000 0.8049 0.6712 1.0000 0.9373

7 0.1108 0.1031 0.1049 0.0941 0.0992 0.1399 0.1331 0.1218

8 0.9550 0.8819 0.8561 0.7156 0.4769 0.3423 0.3589 0.3373

9 1.0000 0.9261 0.9138 0.8760 0.8959 1.0000 1.0000 0.9579

10 1.0000 0.9307 0.9004 1.0000 0.7611 0.7018 1.0000 1.0000

11 0.4527 0.4732 0.4765 0.4623 0.5352 0.5230 0.5946 0.5697

12 0.7957 0.7422 0.6661 0.7116 0.5479 0.4524 0.8424 0.8208

13 0.6315 0.6287 0.6231 0.6202 0.5907 0.5895 0.5901 0.9303

14 0.6998 0.6921 0.6593 0.6281 0.6261 0.6222 0.6194 0.5901

15 0.7879 0.7468 0.7377 0.7330 0.7318 0.7196 0.7163 0.6774

Min 0.0792 0.0780 0.0802 0.0941 0.0971 0.1096 0.0960 0.0947

Median 0.7846 0.7422 0.6661 0.7156 0.6117 0.6712 0.7163 0.8208

Max 1.0000 0.9846 1.0000 1.0000 0.9069 1.0000 1.0000 1.0000

Mean 0.6644 0.6752 0.6650 0.6835 0.5993 0.6232 0.6707 0.6982

Std 0.2823 0.2744 0.2713 0.2878 0.2447 0.2692 0.2878 0.3007

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2014 2015 2016 2017 2018 2019 2020 2021

0.1 0.3 0.5

Fig. 3 Trends of the average stochastic BCC efficiency scores

Table 6 Summary statistics of the projection points of the data

IE OE NIR OR

Mean 340,107.4743 78,079.51062 461,163.6623 574,039.1894

STD 597,764.5414 125,250.5949 547,123.5875 774,703.203
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Results of the bootstrap DEA procedure for α = 0.5 (deterministic case)

After calculating the original DEA efficiency scores in different years, we used the 
bootstrap DEA procedure to calculate the bias and bias-corrected efficiency scores. 
The technical efficiency scores of the banks were computed by using General Alge-
braic Modeling System software on a personal computer (with an Intel Core i7 pro-
cessor). As stated earlier, we applied the input-oriented BCC model to calculate the 
original efficiency scores. Table 7 presents the stochastic BCC efficiency scores in dif-
ferent periods for α = 0.5 (deterministic case).

The last four rows of the table include the statistical indicators. Since the original 
efficiency scores might be biased, we used the bootstrap DEA procedure to improve 
these scores. Tables  8 and 9 present the bias and bias-corrected efficiency scores, 
respectively. For example, in 2021, the average original stochastic BCC efficiency 
score was 0.6982, while the average bias-corrected efficiency score was 0.6291.

The trends of the average bias and bias-corrected efficiency scores are depicted 
in Fig. 4. Overall, before applying the bootstrap DEA procedure, there were 16 effi-
cient banks, whereas after correcting the bias, the discrimination power significantly 
increased. In this case, the bias-corrected efficiency scores were used to rank all of 
the banks (given in parentheses in Table 9), with Banks 5 and 7 occupying the last two 
ranks. Moreover, the maximum average efficiency occurred in 2015, while the mini-
mum was in 2018.

Table 7 Stochastic BCC efficiency scores in different periods α = 0.5

Bank 2014 2015 2016 2017 2018 2019 2020 2021

1 0.7846 0.9096 0.9316 1.0000 0.9069 1.0000 0.8171 1.0000

2 0.8829 0.8829 0.8763 1.0000 0.6117 0.7418 0.9473 1.0000

3 0.5743 0.6346 0.6348 0.8180 0.8748 0.7349 0.8397 0.8472

4 0.4065 0.5138 0.5141 0.4969 0.4294 1.0000 0.5054 0.5887

5 0.0792 0.0780 0.0802 0.0970 0.0971 0.1096 0.0960 0.0947

6 0.8055 0.9846 1.0000 1.0000 0.8049 0.6712 1.0000 0.9373

7 0.1108 0.1031 0.1049 0.0941 0.0992 0.1399 0.1331 0.1218

8 0.9550 0.8819 0.8561 0.7156 0.4769 0.3423 0.3589 0.3373

9 1.0000 0.9261 0.9138 0.8760 0.8959 1.0000 1.0000 0.9579

10 1.0000 0.9307 0.9004 1.0000 0.7611 0.7018 1.0000 1.0000

11 0.4527 0.4732 0.4765 0.4623 0.5352 0.5230 0.5946 0.5697

12 0.7957 0.7422 0.6661 0.7116 0.5479 0.4524 0.8424 0.8208

13 0.6315 0.6287 0.6231 0.6202 0.5907 0.5895 0.5901 0.9303

14 0.6998 0.6921 0.6593 0.6281 0.6261 0.6222 0.6194 0.5901

15 0.7879 0.7468 0.7377 0.7330 0.7318 0.7196 0.7163 0.6774

Min 0.0792 0.0780 0.0802 0.0941 0.0971 0.1096 0.0960 0.0947

Max 1.0000 0.9846 1.0000 1.0000 0.9069 1.0000 1.0000 1.0000

Mean 0.6644 0.6752 0.6650 0.6835 0.5993 0.6232 0.6707 0.6982

Std 0.2922 0.2840 0.2808 0.2979 0.2533 0.2786 0.2979 0.3113

Median 0.7846 0.7422 0.6661 0.7156 0.6117 0.6712 0.7163 0.8208
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Table 8 Bias for α = 0.5

Bank 2014 2015 2016 2017 2018 2019 2020 2021

1 0.0443 0.0212 0.0908 0.0943 0.0572 0.0689 0.0197 0.0969

2 0.0639 0.0566 0.0810 0.0994 0.0214 0.0178 0.0083 0.0464

3 0.0077 0.0345 0.0601 0.0004 0.0724 0.0953 0.0066 0.0922

4 0.0490 0.0730 0.0604 0.0414 0.0550 0.0360 0.0038 0.0885

5 0.0585 0.0608 0.0144 0.0286 0.0398 0.0600 0.0444 0.0872

6 0.0260 0.0909 0.0549 0.0296 0.0262 0.0629 0.0592 0.0430

7 0.0459 0.0057 0.0781 0.0842 0.0088 0.0175 0.0598 0.0309

8 0.0639 0.0558 0.0689 0.0289 0.0059 0.0884 0.0952 0.0761

9 0.0873 0.0701 0.0888 0.0323 0.0503 0.0588 0.0708 0.0970

10 0.0565 0.0397 0.0264 0.0449 0.0428 0.0700 0.0302 0.0601

11 0.0807 0.0129 0.0101 0.0598 0.0687 0.0735 0.0995 0.0475

12 0.0344 0.0041 0.0838 0.0867 0.0756 0.0950 0.0933 0.0367

13 0.0174 0.0138 0.0444 0.0384 0.0149 0.0120 0.0846 0.0940

14 0.0774 0.0622 0.0423 0.0292 0.0452 0.0428 0.0360 0.0787

15 0.0943 0.0350 0.0447 0.0866 0.0985 0.0487 0.0940 0.0612

Min 0.0077 0.0041 0.0101 0.0004 0.0059 0.0120 0.0038 0.0309

Max 0.0943 0.0909 0.0908 0.0994 0.0985 0.0953 0.0995 0.0970

Mean 0.0538 0.0424 0.0566 0.0523 0.0455 0.0565 0.0537 0.0691

Std 0.0254 0.0270 0.0261 0.0305 0.0268 0.0272 0.0351 0.0237

Median 0.0565 0.0397 0.0601 0.0414 0.0452 0.0600 0.0592 0.0761

Table 9 Bias-corrected efficiency scores for α = 0.5

Numbers in parentheses show the ranks of the banks

Bank 2014 2015 2016 2017 2018 2019 2020 2021

1 0.7403(7) 0.8884(3) 0.8408(3) 0.9057(3) 0.8497(1) 0.9311(3) 0.7974(6) 0.9031(3)

2 0.819(4) 0.8263(5) 0.7953(5) 0.9006(4) 0.5903(7) 0.724(4) 0.939(3) 0.9536(1)

3 0.5666(11) 0.6001(11) 0.5747(11) 0.8176(6) 0.8024(3) 0.6396(6) 0.8331(5) 0.755(8)

4 0.3575(12) 0.4408(13) 0.4537(13) 0.4555(12) 0.3744(13) 0.964(1) 0.5016(11) 0.5002(12)

5 0.0207(15) 0.0172(15) 0.0658(14) 0.0684(14) 0.0573(15) 0.0496(15) 0.0516(15) 0.0075(15)

6 0.7795(5) 0.8937(1) 0.9451(1) 0.9704(1) 0.7787(4) 0.6083(8) 0.9408(2) 0.8943(4)

7 0.0649(14) 0.0974(14) 0.0268(15) 0.0099(15) 0.0904(14) 0.1224(14) 0.0733(14) 0.0909(14)

8 0.8911(3) 0.8261(6) 0.7872(6) 0.6867(7) 0.471(11) 0.2539(13) 0.2637(13) 0.2612(13)

9 0.9127(2) 0.856(4) 0.825(4) 0.8437(5) 0.8456(2) 0.9412(2) 0.9292(4) 0.8609(5)

10 0.9435(1) 0.891(2) 0.874(2) 0.9551(2) 0.7183(5) 0.6318(7) 0.9698(1) 0.9399(2)

11 0.372(13) 0.4603(12) 0.4664(12) 0.4025(13) 0.4665(12) 0.4495(11) 0.4951(12) 0.5222(10)

12 0.7613(6) 0.7381(7) 0.5823(9) 0.6249(9) 0.4723(10) 0.3574(12) 0.7491(7) 0.7841(7)

13 0.6141(10) 0.6149(10) 0.5787(10) 0.5818(11) 0.5758(9) 0.5775(10) 0.5055(10) 0.8363(6)

14 0.6224(9) 0.6299(9) 0.617(8) 0.5989(10) 0.5809(8) 0.5794(9) 0.5834(9) 0.5114(11)

15 0.6936(8) 0.7118(8) 0.693(7) 0.6464(8) 0.6333(6) 0.6709(5) 0.6223(8) 0.6162(9)

Min 0.0207 0.0172 0.0268 0.0099 0.0573 0.0496 0.0516 0.0075

Max 0.9435 0.8937 0.9451 0.9704 0.8497 0.9640 0.9698 0.9536

Mean 0.6106 0.6328 0.6084 0.6312 0.5538 0.5667 0.6170 0.6291

Std 0.2888 0.2772 0.2723 0.2977 0.2443 0.2801 0.3058 0.3091

Median 0.6936 0.7118 0.6170 0.6464 0.5809 0.6083 0.6223 0.7550
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The effect of the contextual variables for α = 0.5

After calculating the stochastic technical efficiency of the banks, we first paired all 
of the variables in this application (the log of technical efficiency and the explana-
tory variables) and then employed Pearson’s correlation test to measure the relations 
between the different pairs of variables. The correlation coefficients are presented in 
Table 10. Based on the findings, there is a positive correlation between Logθ (the loga-
rithm of technical efficiency), total assets, and the number of branches. However, the 
correlation between θ , the nonperforming loan ratio, and the total capital adequacy 
ratio is significantly negative. Meanwhile, the maximum correlation of Logθ is related 
to total assets.

At this point, we removed the impact of the contextual variables on bank efficiency 
in order to calculate the refined (bank-specific) efficiency scores and to determine the 
impact of the contextual variables on efficiency. We also examined the contextual vari-
ables that impact the technical efficiency of banks to remove their effects over which 
the banks have no control. In this regard, we focused on a deterministic case ( α = 0.5 ). 
Additionally, we assumed that the bias-corrected efficiency score is the dependent vari-
able, while the four contextual variables (the total capital adequacy ratio, the nonper-
forming loan ratio, total assets, and the number of branches) are independent variables.
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Fig. 4 Trends of the average bias and bias-corrected efficiency scores

Table 10 Pearson correlation coefficients

Log θ TCAR NPLR TASS NBRNCH

Log θ − 0.01309 − 0.111546 0.20756 0.012313

TCAR 0.310011 − 0.27033 − 0.26794

NPLR − 0.51014 − 0.40821

TASS 0.911628

NBRNCH
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The results of our regression Model (4) in the meta-frontier approach are listed in 
Table 11. Based on the findings, the nonperforming loan ratio variable is statistically sig-
nificant. The positive values of the coefficients also indicate that there is a direct relation-
ship between the efficiency value and the corresponding contextual variable, while the 
negative value shows that there is an inverse relationship between them. Moreover, there 
is a negative relationship between the nonperforming loan ratio and technical efficiency 
as well as a negative relationship between the total capital adequacy ratio and technical 
efficiency. Regarding the coefficient −0.06818 for the nonperforming loan ratio, it indi-
cates that the change in the BCC technical efficiency associated with a one-unit increase 
in this variable is 100×

(
e−0.06818 − 1

)
= −6.59 . In other words, a one-unit increase in 

the nonperforming loan ratio results in a 6.59% reduction in productivity.
It is important to note that the majority of nonperforming loans are due to incorrect 

policies of the central bank. Meanwhile, banks are forced to accept borrowers intro-
duced by upstream institutions (typically the government and the central bank), with 
many of these borrowers defaulting on their loans. Thus, since there are no strong con-
trol mechanisms, the majority of these loans are nonperforming. In this regard, banks 
should be more careful in identifying the creditworthiness of borrowers, regardless of 
the influence of the government and the central bank.

Furthermore, there is a negative relationship ( −0.00038) between the number of 
branches and technical efficiency. This indicates that as the number of branches 
increases, the technical efficiency decreases. This may be due to the fact that an increase 
in the number of branches requires an increase in the number of staff (and related costs), 
which ultimately reduces technical efficiency. Therefore, bank managers should conduct 
research on developing and regulating the networks of each bank to deactivate ineffi-
cient banks in the system.

Productivity change of the banks

In this study, we used our proposed stochastic productivity measurement model to 
assess productivity change of the banks in our sample. For this purpose, we applied 
Models (5), (6), and (7). Specifically, we first used the stochastic input-oriented Model 
(5) to evaluate stochastic efficiency measures SEo(s, t) , SEo(t, t) , SEo(t, s) , and SEo(s, s) . 
In order to calculate the firm-specific technical efficiency and productivity index, we 

Table 11 Regression results on the contextual variables ( α = 0.5)

Contextual variable Coefficient Std 95% bootstrap confidence 
Interval

Lower Upper

TCAR − 0.0018 0.112103 − 0.098123 0.311325

NPLR − 0.06818 0.013108 − 0.093181 0.043402

TA 1.03E−7 0.004411 0 0.000103

NB − 0.00038 0.006813 − 0.000013 0.001393



Page 18 of 27Amirteimoori et al. Financial Innovation           (2024) 10:66 

removed the impact of the contextual variables on firm efficiency. By using the regres-
sion Model (6), the previously calculated measures were regressed on their period-
related contextual variables, after which the refined measures were used in Model (7) to 
calculate the stochastic Malmquist productivity index. To better understand the calcula-
tion of SEo(s, t) , the detailed procedure and results for the first period (2014–2015) at a 
confidence level of α = 0.5 is presented in “Appendix 3”.

The results for the three different confidence levels (α = 0.1, 0.3, 0.5) are listed in 
Table 12. Based on the findings, the minimum and maximum growth (at confidence 
levels of 0.1 and 0.3) occurred in 2018–2019 and 2016–2017, respectively. However, 
at a confidence level of 0.5, both of these minimum and maximum values occurred in 
2018–2019.

Figure 4 presents the average stochastic productivity change for each period from 
2014 to 2021. According to this figure, the stochastic TFP trend from 2014 to 2021 
significantly fluctuated. Examples are as follows. First, at a confidence level of 0.1, it 
increased from 2014 to 2017, but decreased in 2017–2018. Then, it increased in 2019–
2020, but decreased in 2020–2021. Despite such fluctuations, from 2014 to 2020, the 
overall stochastic TFP increased by 7.62%. Second, at a confidence level of 0.3, the 
TFP trend decreased in 2014–2015 and 2015–2016, but increased in 2015–2016. 
Then, it decreased in 2017–2018, but increased in 2018–2019 and 2019–2020. Again, 
despite such fluctuations, from 2014 to 2020, the overall stochastic TFP increased by 
3.36%. Finally, the TFP trend at a confidence level of 0.5 was similar to that of α = 0.3 . 
Specifically, the TFP trend from 2014 to 2021 was 3.7%. An interesting finding is that 
at all three confidence levels, the TFP trend in 2016–2017 was at the maximum.

Table 12 Statistical description of stochastic Malmquist productivity index (SM)

Alpha Indicators 2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–2021

0.1 Min 0.7501 0.7257 0.7782 0.7360 0.1979 0.9239 0.3967

Median 0.9717 0.9751 1.1152 0.9259 0.9810 1.3353 1.0976

Max 1.5087 1.1227 2.7271 1.2416 2.4239 2.0255 1.6751

Mean 0.9588 0.9686 1.2203 0.9466 0.9789 1.3999 1.0319

Std 0.1789 0.1060 0.4328 0.1320 0.4538 0.2539 0.2892

0.3 Min 0.7727 0.7228 0.7813 0.7172 0.2081 0.9010 0.4113

Median 0.9742 0.9848 1.1078 0.9354 0.9788 1.3299 1.0594

Max 1.5098 1.1427 2.7470 1.2013 2.6389 1.8013 1.5980

Mean 0.9829 0.9686 1.2278 0.9354 1.0061 1.3374 1.0159

Std 0.1621 0.1043 0.4385 0.1380 0.4997 0.2285 0.2714

0.5 Min 0.7536 0.6476 0.9080 0.6237 0.2240 0.7956 0.4316

Median 1.0327 0.9981 1.1283 0.9430 0.9940 1.2176 1.0358

Max 1.1767 1.1492 1.5909 1.1708 2.8217 1.7291 1.4149

Mean 1.0019 0.9668 1.1542 0.9272 1.0357 1.2569 0.9801

Std 0.1123 0.1428 0.1966 0.1560 0.5476 0.2702 0.2395
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Tables 13 and 14 present the results of the stochastic technical change (STC) and 
the stochastic efficiency change (SEC), respectively. The STC and SEC trends are also 
depicted in Figs. 4 and 5 in “Appendix 1”, respectively. As for the STC, from 2014 to 
2021, there was a 5% growth in productivity at a confidence level of 0.1. However, 
at a confidence level of 0.3, there was a growth of 0.1%. Meanwhile, at a confidence 
level of 0.5, there was a decrease of 6.6% in productivity. Similarly, at confidence lev-
els of 0.1, 0.3, and 0.5, there was a 1.5%, 2.33%, and 2.35% growth in productivity in 

Table 13 Statistical description of stochastic technical change (STC)

Alpha Indicators 2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–2021

0.1 Min 0.7436 0.7039 0.7508 0.7273 0.2001 1.3405 0.3989

Median 0.9026 1.0455 1.0743 0.9124 0.9151 1.5918 1.0562

Max 1.5289 1.1456 2.8250 1.1824 2.1276 2.2714 1.3487

Mean 0.9519 0.9965 1.2875 0.9137 0.9182 1.6297 0.9998

Std 0.1919 0.1159 0.4740 0.0983 0.3815 0.2448 0.2455

0.3 Min 0.7866 0.6996 0.7508 0.7258 0.2107 1.3072 0.4142

Median 0.9335 1.0560 1.1289 0.9045 0.9050 1.5161 1.0436

Max 1.5277 1.1159 2.8937 1.1745 2.2414 2.0305 1.3064

Mean 0.9791 0.9978 1.3122 0.8988 0.9343 1.5594 0.9805

Std 0.1728 0.1170 0.4928 0.1083 0.4014 0.1853 0.2260

0.5 Min 0.6576 0.5891 0.6483 0.6180 0.2219 0.5449 0.4360

Median 0.9516 1.0519 1.1597 0.8983 0.9278 1.4801 1.0079

Max 2.0794 1.1192 7.4377 1.1695 2.8283 2.2847 1.2924

Mean 1.0415 1.0079 1.6229 0.8887 0.9894 1.4462 0.9427

Std 0.3066 0.1310 1.5857 0.1249 0.5332 0.5274 0.2000

Table 14 Statistical description of stochastic efficiency change (SEC)

Alpha Indicators 2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–2021

0.1 Min 0.9250 0.8832 0.6790 0.8528 0.9021 0.6378 0.9875

Median 0.9962 0.9785 1.0241 1.0120 0.9973 0.8793 1.0055

Max 1.1381 1.0826 1.1207 1.4938 1.5339 1.0291 1.2420

Mean 1.0109 0.9745 0.9640 1.0403 1.0591 0.8600 1.0257

Std 0.0520 0.0527 0.1263 0.1401 0.1599 0.0986 0.0606

0.3 Min 0.9228 0.8702 0.6310 0.8691 0.9202 0.6085 0.9752

Median 0.9957 0.9798 1.0221 1.0133 0.9984 0.8763 1.0072

Max 1.1097 1.0984 1.1280 1.4269 1.6133 1.0293 1.2836

Mean 1.0064 0.9739 0.9553 1.0439 1.0657 0.8579 1.0299

Std 0.0447 0.0585 0.1352 0.1284 0.1777 0.1076 0.0725

0.5 Min 0.5590 0.6244 0.1498 0.8197 0.7056 0.4074 0.9516

Median 1.0887 0.9684 0.9612 1.0165 0.9977 0.8720 1.0091

Max 1.3864 1.4419 1.4004 1.3501 2.1358 1.9014 1.3199

Mean 1.0143 0.9791 0.9562 1.0452 1.0710 1.0058 1.0350

Std 0.2206 0.2021 0.3222 0.1196 0.3076 0.4388 0.0828



Page 20 of 27Amirteimoori et al. Financial Innovation           (2024) 10:66 

the SEC, respectively. This indicates that as the confidence level increases, the STC 
increases, whereas the SEC decreases.

An interesting finding is that at confidence levels of 0.1 and 0.3, the mean of the STC in 
2019–2020 was at the maximum, whereas the mean SEC was at the minimum. The trends 
of the SEC as well the technological and productivity changes are depicted in Figs. 5, 6 and 
7 in “Appendix 1”. Based on the results of our regression analysis, the most statistically sig-
nificant contextual variable in Iranian banks was the nonperforming loan ratio, followed by 
the total capital adequacy ratio.

Conclusion
In this study, we applied a two-stage double bootstrap DEA procedure to evaluate the tech-
nical efficiency of 15 Iranian banks from 2014 to 2021. In the first stage, the stochastic BCC 
model was used to calculate the technical efficiency of the banks. Then, in the second stage, 
ordinary least squares were used to determine the impact of the contextual variables on 
the efficiency scores obtained in the first stage. Subsequently, we developed a firm-specific, 
DEA-based Malmquist index model for a stochastic environment in which other factors, 
such as contextual and explanatory variables, can have a significant impact on the perfor-
mance and productivity of firms.

In order to refine firm-specific relative efficiency and productivity growth, we first 
applied a two-stage procedure in which the first stage included the estimation of stochastic 
efficiency by using the stochastic BCC model and the second stage included the regression 
of estimated efficiency scores on the contextual variables by using ordinary least squares. 
Then, we applied the proposed theoretical framework to analyze the productivity growth 
of the sample of Iranian banks. Based on the 120 bank-year observations of 15 banks from 
2014 to 2021, the explanatory variables (i.e., the nonperforming loan ratio and the num-
ber of branches) were negatively related to the stochastic technical efficiency of the banks. 
Moreover, from 2014 to 2021, there was a growth in productivity in terms of both technol-
ogy and efficiency.

As a practical suggestion for improving the technical efficiency and productivity of banks, 
we recommend optimizing bank-specific inputs and outputs. Specifically, increasing the 
nominal interest rate and decreasing operational expenses may help improve the technical 
efficiency and productivity of banks. Furthermore, since the nonperforming loan ratio and 
the number of branches have a significant negative relationship with technical efficiency, 
we recommend decreasing the nonperforming loan ratio and the number of branches in 
order to the improve the efficiency and productivity of banks.

At this point, some suggestions for future research are as follows. First, the proposed pro-
ductivity change measurement procedure can be developed for other types of uncertainty 
such as cardinal, fuzzy, and interval data. Second, in order to examine the stochastic techni-
cal efficiency of firms, it is important to compare the stochastic DEA model with a stochas-
tic frontier model. Third, the proposed approach in this study can be used to compare the 
managerial ability of top managers over time. Finally, the proposed stochastic productivity 
index measurement model and two-stage procedure can be applied to analyze the produc-
tivity change of firms on a wider scale.
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Appendix 1
See Figs. 5, 6 and 7.
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Appendix 2
To show how Model 5 works, we now give the empirical form of this model. Suppose 
we have two DMUs with a single input and single output in two periods. The mean 
and STD of the data are given in the following two Tables 15 and 16.

Suppose DMU1 is under evaluation and we are interested in computing SE1(1, 2) at 
confidence level α = 0.5 . Model (5) is written as follows:
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Fig. 7 Average of stochastic efficiency changes

Table 15 Mean of the input and output in two periods

Period 1 Period 2

x
(1)

1
y
(1)

1
x
(2)

1
y
(2)

1

DMU1 2 3 1 2

DMU2 4 1 3 2

Table 16 STD of the input and output in two periods

Period 1 Period 2

x
(1)

1
y
(1)

1
x
(2)

1
y
(2)

1

DMU1 0.2 0.3 0.1 0.2

DMU2 0.4 0.1 0.3 0.2
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Similarly, SEo(2, 1) is formulated as follows:

We then applied GAMS software to solve our models.

Appendix 3
To better understan the process of calculating SEo(1, 1) , the detailed procedure and 
results for the first period (2014–2015) at confidence level α = 0.5 is given. Tables 17 and 
18 give the inputs and outputs of the banks in two successive periods (2014 to 2015). The 
numerical values of the four contextual variables in two successive periods are given in 

SEo(1, 2) = Minθ

s.t.

�12 + 3�22 − φ−1(0.5)
(
p+1 − p−1

)
≤ 2θ ,

0.1�12 + 0.3�22 − 0.2θ =
(
p+1 + p−1

)
,

2�12 + 2�22 − φ−1(0.5)
(
q+1 + q−1

)
≥ 3,

0.2�12 + 0.2�22 − 0.2 =
(
q+1 − q−1

)
,

�12 + �22 = 1,

�12, �22, p
+
1 , p

−
1 , q+1 , q

−
1 ≥ 0.

SEo(1, 2) = Minθ

s.t.

2�12 + 4�22 − φ−1(0.5)
(
p+1 − p−1

)
≤ θ ,

0.2�12 + 0.4�22 − 0.1θ =
(
p+1 + p−1

)
,

3�12 + �22 − φ−1(0.5)
(
q+1 + q−1

)
≥ 2,

0.3�12 + 0.1�22 − 0.2 =
(
q+1 − q−1

)
,

�12 + �22 = 1,

�12, �22, p
+
1 , p

−
1 , q+1 , q

−
1 ≥ 0.

Table 17 Mean and std of inputs and outputs in 2014

IE OE NIR OR

Mean Std Mean std Mean std Mean Std

1 1,817,822 45,800.06 150,948.1 41,131.63 1,319,232 43,645.27 2,123,132 35,294.81

2 1,606,116 35,651.15 64,386.12 31,782.72 1,233,526 21,096.37 1,343,218 22,745.91

3 890,012.7 36,079.01 316,013.5 30,410.57 663,879.2 33,624.22 1,020,246 25,273.76

4 631,195.9 32,295.27 568,944.6 28,526.83 202,196.2 19,840.48 694,750.3 21,490.02

5 253,019.9 42,416.48 176,865.5 36,548.05 116,781 29,061.7 208,356.2 30,711.24

6 31,291.24 16,149.4 30,193.43 27,430.36 148,321.8 38,144.01 265,172.7 19,793.55

7 121,514.1 25,910.36 137,239.7 22,941.92 177,851.2 11,455.57 154,423.3 13,105.11

8 41,009.28 29,324.76 11,861.19 10,978.17 149,829.1 26,869.98 144,002.8 18,519.52

9 14,411.78 11,033.48 11,151.32 9649.265 127,051.3 7112.177 179,853.9 9861.715

10 15,941.78 2299.053 10,921.12 9761.051 127,331.2 9935.75 110,013.2 11,585.29

11 37,671.14 24,265.59 28,005.39 22,397.16 137,899.3 11,810.81 190,983.1 13,460.35

12 36,306.11 17,707.87 13,804.82 8569.717 117,579.1 16,253.08 129,174.8 7902.619

13 19,857.42 18,038.77 34,108.41 15,970.33 128,865.4 10,283.98 129,803.3 9333.518

14 17,809.32 1804.099 307,959.9 17,172.56 124,781.1 10,386.2 121,087.1 7535.741

15 15,819.33 1097.835 28,659.31 14,088.26 121,329.8 36,301.91 120,110.5 9551.449
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Table 19. We first applied Model 5 to calculate SEo(1, 1) , SEo(2, 1), SEo(1, 2) and SEo(2, 2).  
The results are listed in Table 20.

Table 18 Mean and std of inputs and outputs in 2015

IE OE NIR OR

Mean Std Mean std Mean std Mean

1 1,827,822 46,426.05 163,948.1 43,221.91 1,351,232 45,591.17 2,553,133 37,405.05

2 1,616,116 36,277.14 65,386.7 33,873 1,234,326 23,042.26 1,443,218 24,856.14

3 900,012.7 36,704.99 317,013.8 32,500.85 664,879.2 35,570.12 1,120,237 27,383.99

4 641,195.9 32,921.25 569,944.7 30,617.11 205,197.1 22,886.38 794,740.6 23,600.25

5 263,019.9 43,042.47 178,865.5 38,638.33 117,891 31,007.6 208,346.1 32,821.47

6 41,091.14 32,924.78 31,093.36 29,520.64 149,321.8 40,089.9 365,182.6 21,903.78

7 131,514.1 26,536.34 138,239.7 25,032.2 178,901.2 13,401.47 156,423.3 15,215.34

8 51,009.28 29,950.75 12,861.17 12,023.31 150,919.1 29,815.88 144,113 20,629.75

9 15,811.78 11,346.47 12,151.72 10,694.41 129,051.3 9058.073 180,053.9 10,871.95

10 16,041.78 11,808.26 11,921.72 10,806.19 128,431.3 11,881.65 110,053.2 13,695.52

11 38,671.14 24,891.58 29,005.39 24,487.44 138,909.7 13,756.7 200,983.1 15,570.58

12 37,306.11 18,333.85 14,804.9 9614.857 118,979.1 18,198.98 130,175 10,012.85

13 19,957.42 9332.376 35,108.41 18,060.61 129,965.6 13,061.92 130,003.5 9743.751

14 18,009.32 9333.487 31,999.9 19,262.84 125,981 12,332.1 122,087.2 8945.974

15 16,689.33 11,291.34 29,889.31 16,178.54 122,329.8 38,247.81 120,235.5 10,061.68

Table 19 Contextual variables in two successive periods (2014 and 2015)

2014 2015

NPLR TCAR TA NB NPLR TCAR TA NB

1 13.48 0.44 112,919,756.41 3099 14.38 0.53 113,919,756.50 3103

2 14.25 0.32 84,875,973.23 2297 15.15 0.41 85,875,973.32 2301

3 15.81 0.74 66,084,600.81 1849 16.71 0.83 67,084,600.90 1853

4 19.62 1.41 27,391,242.43 1684 20.52 1.5 28,391,242.52 1688

5 14.85 0.56 19,009,781.50 1601 15.75 0.65 20,009,781.59 1605

6 19.31 2.93 11,874,512.71 1457 20.21 3.02 12,874,512.80 1461

7 15.99 1.92 6,565,485.67 1229 16.89 2.01 7,565,485.76 1233

8 27.42 4.35 5,276,504.52 1044 28.32 4.44 5,376,504.61 1048

9 19.08 0.93 2,923,209.15 1031 19.98 1.02 3,023,209.24 1035

10 19.09 1.8 3,089,804.69 784 19.99 1.89 3,189,804.78 788

11 73.64 1.78 1,914,307.12 709 74.54 1.87 2,014,307.21 713

12 23.24 1.74 1,682,139.09 562 24.14 1.83 1,782,139.18 566

13 17.61 1.99 1,509,843.13 387 18.51 2.08 1,609,843.22 391

14 15.2 2.04 14,990,876.24 365 16.1 2.13 15,090,876.33 369

15 21.55 1.54 1,199,890.57 339 22.45 1.63 1,259,890.66 343
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The results of our regression analysis are listed in the following:
2014 against 2014:

Regression Statistics

Multiple R 0.593342

R Square 0.352055

Adjusted R Square 0.092877

Standard Error 0.245798

Observations 15

ANOVA Df SS MS F Significance F

Regression 4 0.32827 0.082067 1.358352 0.315241

Residual 10 0.604169 0.060417

Total 14 0.932438
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Table 20 Different efficiency scores in 2014 to 2015 at α = 0.5

SEo(1, 1) SEo(2, 1) SEo(1, 2) SEo(2, 2)
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4 0.704 0.843 0.4915 0.6112

5 0.0945 0.0928 0.0845 0.0834

6 1 3.1018 1.2733 1

7 0.6102 0.5754 0.679 0.6389

8 1 0.9264 1.1185 1

9 1 1.0251 1.0971 1

10 1 0.9843 1.0916 1

11 0.6437 0.649 0.715 0.7282

12 0.7957 0.7422 0.8681 0.8097

13 0.7983 0.838 0.7963 0.8494
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